Skip to main content
Log in

An iterative method for solving linear fuzzy fractional integral equation

  • Fuzzy systems and their mathematics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In the present work, we construct an iterative method for the numerical solution of fuzzy fractional Volterra integral equations, by using the technique of fuzzy product integration. The existence and uniqueness of the solution and the uniform boundedness of the terms of the Picard iterations are proved. The convergence of the iterative algorithm is obtained, and the apriori error estimate is given in terms of the Lipschitz constants. A numerical example illustrates the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas S, Benchohra M (2012) Fractional order Riemann–Liouville integral equations with multiple time delays. Appl Math E Notes 12:79–87

    MathSciNet  MATH  Google Scholar 

  • Agarwal RP, Laksmikantam V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal 72:2859–2862

    Article  MathSciNet  Google Scholar 

  • Agarwal RP, Arshad S, O’Regan D, Lupulescu V (2012) Fuzzy fractional integral equations under compactness type condition. Fract Calc Appl Anal 15:572–590

  • Agheli B, Adabitabar FM (2020) A fuzzy transform method for numerical solution of fractional volterra integral equations. Int J Appl Comput Math 6:5

    Article  MathSciNet  Google Scholar 

  • Ahmad N, Ullah A, Ullah A, Ahmad S, Shah K, Ahmad I (2021) On analysis of the fuzzy fractional order Volterra–Fredholm integro-differential equation. Alex. Eng J 60:1827–1838

    Article  Google Scholar 

  • Allahviranloo T, Armand A, Gouyandeh Z, Ghadiri H (2013) Existence and uniqueness of solutions for fuzzy fractional Volterra–Fredholm integro-differential equations. J. Fuzzy Set Valued Anal. 2013:1–9

    Article  MathSciNet  Google Scholar 

  • Allahviranloo T, Armand A, Gouyandeh Z (2014) Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J Intell Fuzzy Syst 26:1481–1490

    Article  MathSciNet  Google Scholar 

  • András S (2003) Weakly singular Volterra and Fredholm–Volterra integral equations. Studia Univ Babeş Bolyai Math 48(3):147–155

    MathSciNet  MATH  Google Scholar 

  • Armand A, Allahviranloo T, Abbasbandy S, Gouyandeh Z (2019) The fuzzy generalized Taylor’s expansion with application in fractional differential equations. Iran J Fuzzy Syst 16(2):57–72

  • Arshad S, Lupulescu V (2011) On the fractional differential equations with uncertainty. Nonlinear Anal 74:85–93

    Article  MathSciNet  Google Scholar 

  • Atangana A, Bildik N (2013) Existence and numerical solution of the Volterra fractional integral equations of the second kind. Math Probl Eng 2013:1–12

    MathSciNet  MATH  Google Scholar 

  • Atkinson KE (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Atkinson KE (1974) The numerical solution of an Abel integral equation by a product trapezoidal method. SIAM J Numer Anal 11:97–101

    Article  MathSciNet  Google Scholar 

  • Băleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods. In: Series on complexity, nonlinearity and chaos, vol 3. World Scientific Publishers, Co., N. Jersey, London, Singapore

  • Bede B (2013) Mathematics of fuzzy sets and fuzzy logic. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Bede B, Gal SG (2004) Quadrature rules for integrals of fuzzy-number-valued functions. Fuzzy Sets Syst 145:359–380

    Article  MathSciNet  Google Scholar 

  • Bica AM, Popescu C (2013) Numerical solutions of the nonlinear fuzzy Hammerstein–Volterra delay integral equations. Inf Sci 233:236–255

    Article  MathSciNet  Google Scholar 

  • Congxin W, Cong W (1997) The supremum and infimum of the set of fuzzy numbers and its applications. J Math Anal Appl 210:499–511

    Article  MathSciNet  Google Scholar 

  • Diamond P, Kloeden P (2000) Metric topology of fuzzy numbers and fuzzy analysis. In: Dubois D, Prade H et al (eds) Handbook fuzzy sets series, vol 7. Kluwer Academic Publishers, Dordrecht, pp 583–641

    MATH  Google Scholar 

  • Diamond P (2002) Theory and applications of fuzzy Volterra integral equations. IEEE Trans Fuzzy Syst 10:97–102

    Article  Google Scholar 

  • Gal SG (2000) Approximation theory in fuzzy setting. In: Anastassiou GA (ed) Handbook of analytic-computational methods in applied mathematics. Chapman & Hall/CRC Press, Boca Raton, pp 617–666 (Chapter 13)

  • Goetschel R, Voxman W (1986) Elementary fuzzy calculus. Fuzzy Sets Syst 18:31–43

  • Gorenflo R (1997) Fractals and fractional calculus in continuum mechanics. In: Carpinteri A, Mainardi F (eds) Springer, Wien

  • Hoa NV (2021) On the stability for implicit uncertain fractional integral equations with fuzzy concept. Iran J Fuzzy Syst 18(1):185–201

    MathSciNet  MATH  Google Scholar 

  • Hu S, Khavanin M, Zhuang WAN (1989) Integral equations arising in the kinetic theory of gases. Appl Anal 34(3–4):261–266

    Article  MathSciNet  Google Scholar 

  • Ibrahim RW, Momani S (2007) Upper and lower bounds of solutions for fractional integral equations. Surv Math Appl 2:145–156

    MathSciNet  MATH  Google Scholar 

  • Khodadadi E, Celik E (2013) The variational iteration method for fuzzy fractional differential equations with uncertainty. Fixed Point Theory Appl 2013:1–13

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier Science B.V, Amsterdam

    MATH  Google Scholar 

  • Laksmikantam V (2008) Theory of fractional functional differential equations. Nonlinear Anal 69:3337–3343

    Article  MathSciNet  Google Scholar 

  • Lupulescu V (2015) Fractional calculus for interval-valued functions. Fuzzy Sets Syst 265:63–85

    Article  MathSciNet  Google Scholar 

  • Muskhelishvili NI, Radok JRM (2008) Singular integral equations: boundary problems of function theory and their application to mathematical physics. Courier Corporation, Chelmsford

  • Ngo HV (2015) Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst 280:58–90

    Article  MathSciNet  Google Scholar 

  • Hoa NV, Lupulescu V, O’Regan D (2017) Solving interval-valued fractional initial value problems under Caputo gH-fractional differentiability. Fuzzy Sets Syst 309:1–34

  • Ngo HV, Lupulescu V, O’Regan D (2018) A note on initial value problems for fractional fuzzy differential equations. Fuzzy Sets Syst 347:54–69

  • Micula S (2018) An iterative numerical method for fractional integral equations of the second kind. J Comput Appl Math 339:124–133

    Article  MathSciNet  Google Scholar 

  • Mazandarani M, Vahidian KA (2013) Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun Nonlinear Sci Numer Simul 18:12–21

    Article  MathSciNet  Google Scholar 

  • Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval valued functions and interval differential equations. Nonlinear Anal 71:1311–1328

    Article  MathSciNet  Google Scholar 

  • Vu H, Rassias JM, Van Hoa N (2020) Ulam–Hyers–Rassias stability for fuzzy fractional integral equations. Iran J Fuzzy Syst 17(2):17–27

    MathSciNet  MATH  Google Scholar 

  • Vu H, Van Hoa N (2020) Applications of contractive-like mapping principles to fuzzy fractional integral equations with the kernel \(\psi \) -functions. Soft Comput 24(24):18841–18855

    Article  Google Scholar 

  • Vu H, Hoa NV (2021) Hyers–Ulam stability of fuzzy fractional Volterra integral equations with the kernel \(\psi \)-function via successive approximation method. Fuzzy Sets Syst 419:67–98

    Article  MathSciNet  Google Scholar 

  • Wu GC, Băleanu D (2013) Variational iteration method for fractional calculus—a universal approach by Laplace transform. Adv Differ Equ 2013(18):1–9

    MathSciNet  MATH  Google Scholar 

  • Zheng B (2014) Explicit bounds derived by some new inequalities and applications in fractional integral equations. J Inequal Appl 2014:4

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors declare that the research was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shokrollah Ziari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bica, A.M., Ziari, S. & Satmari, Z. An iterative method for solving linear fuzzy fractional integral equation. Soft Comput 26, 6051–6062 (2022). https://doi.org/10.1007/s00500-022-07120-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07120-w

Keywords

Navigation