Abstract
To solve constrained optimization problems (COPs), teaching learning-based optimization (TLBO) has been used in this study as a baseline algorithm. Different constraint handling techniques (CHTs) are incorporated in the framework of TLBO. The superiority of feasibility (SF) is one of the most commonly used and much effective CHTs with various decisive factors. The most commonly utilized decision-making factors in SF are a number of constraints violated (NCV) and weighted mean (WM) values for comparing solutions. In this paper, SF based on a number of constraints violated (NCVSF) and weighted mean (WMSF) is incorporated in the framework of TLBO and applied on CEC-2006 constrained benchmark functions. The use of a single factor for making the decision of the winner might be not a good idea. The combined use of NCV and WM factors in hybrid superiority of feasibility (HSF) has shown the dominating role of NCV over WM. We have employed NCVSF, WMSF, and HSF in the TLBO framework and suggested three constrained versions, namely NCVSF-TLBO, WMSF-TLBO, and HSF-TLBO. The performance of the proposed algorithms is evaluated upon CEC-2006 constrained benchmark functions. Among them, HSF-TLBO has shown better performance on most of the used constrained optimization problems in terms of proximity and diversity.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig20_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig21_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig22_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig23_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig24_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-022-07169-7/MediaObjects/500_2022_7169_Fig25_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
The data used to support the findings of this study are available from the corresponding author upon request.
References
Antoniou A, Lu WS (2007) Practical optimization: algorithms and engineering applications. Springer
Aur R, Islam A, Belhaouari SB (2020) Multi-cluster jumping particle swarm optimization for fast convergence. IEEE Access 8:189–394
Ao YY (2010) An adaptive differential evolution algorithm to solve constrained optimization problems in engineering design. Engineering 2(1):65–77
Asim M, Mashwani WK, Yeniay Ö, Jan MA, Tairan N, Hussian H, Wang GG (2017) Hybrid genetic algorithms for global optimization problems. Hacet J Math Stat 47(3):539–551
Back FHMT, Schwefel H (1992). A survey of evolution strategies. Morgan Kauffman, Mateo
Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York
Beyer H-G, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52
Deb K (2001) Multi-objective optimization using evolutionary algorithms, 1st edn. Wiley, Chichester
Eiben AE, Smith JE (2015) Introduction to evolutionary computing, 2nd edn. Springer
Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co.. Inc., Boston
Grosan C, Abraham A (2007) Hybrid evolutionary algorithms: methodologies, architectures, and reviews. Stud Comput Intell (SCI) 75:1–17
Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105
Khanum RA, Jan MA, Mashwani WK, Tairan NM, Khan HU, Shah H (2018) On the hybridization of global and local search methods. J Intell Fuzzy Syst 35(3):3451–3464
Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. A Bradford Book, 1st edn
Koza J (1995) Genetic programming II autonomous discovery of reusable program. MIT Press
Koza JR, Poli R (2005) Genetic programming. In: Search methodologies. Springer, pp 127–164
Khan W (2012) Hybrid multiobjective evolutionary algorithm based on decomposition. PhD, Department of Mathematical Sciences, University of Essex, Colchester
Lasisi A, Tairan N, Ghazali R, Mashwani WK, Qasem SN, Garg H, Arora A (2019) Predicting crude oil price using fuzzy rough set and bio-inspired negative selection algorithm. IJSIR 10(4):25–37
Liang J, Runarsson T, Mezura-Montes E, Clerc M, Suganthan P, Coello C, Deb K (2006) Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Lulu Enterprises, UK Ltd
Rao RV (2016) Teaching-learning-based optimization algorithm. In: Teaching learning based optimization algorithm, pp 9–39
Marjanovic N, Kostic N, Petrovic N, Blagojevic M, Matejic M (2017) Teaching-learning-based optimization algorithm for solving machine design constrained optimization. Ann Fac Eng Hunedoara 15(2):105
Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling techniques. IEEE Trans Evolut Comput 14(4):561–579
Mareli M, Twala B (2018) An adaptive cuckoo search algorithm for optimisation. Appl Comput Inf 14(2):107–115
Mashwani WK (2011) MOEA/D with DE and PSO: MOEA/D-DE+PSO, pp 217–221
Mashwani WK (2011) Hybrid multiobjective evolutionary algorithms: a survey of the state-of-the-art. Int J Comput Sci Issues 8(6):374–392
Mashwani WK (2014) Enhanced versions of differential evolution: state-of-the-art survey. Int J Comput Sci Math 5(2):107–126
Mashwani WK, Salhi A (2012) A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl Soft Comput 12(9):2765–2780
Mashwani WK, Salhi A (2014) Multiobjective memetic algorithm based on decomposition. Appl Soft Comput 21:221–243
Mashwani WK, Salhi A, Yeniay O, Hussian H, Jan MA (2017) Hybrid non-dominated sorting genetic algorithm with adaptive operators selection. Appl Soft Comput 56:1–18
Mshwani WK, Zai A, Yeniay Ö, Shah H, Tairan N, Sulaiman M (2018) Hybrid constrained evolutionary algorithm for numerical optimization problems. Hacet J Math Stat 48(3):931–950
Mashwani WK, Rehman ZU, Bakar MA, Koçak I, Fayaz M (2021) A customized differential evolutionary algorithm for bounded constrained optimization problems. Complexity 2021:5515701. https://doi.org/10.1155/2021/5515701
Mashwani WK, Shah SNA, Belhaouari SB, Hamdi A (2021) Ameliorated ensemble strategy-based evolutionary algorithm with dynamic resources allocations. Int J Comput Intell Syst 14(1):412-437
Mashwani WK, Shah H, Kaur M, Bakar MA, Miftahuddin M (2021) Large-scale bound constrained optimization based on hybrid teaching learning optimization algorithm. Alex Eng J 60(6):6013–6033
Sulaiman M, Salhi A, Khan A, Muhammad S, Khan W (2018) On the theoretical analysis of the plant propagation algorithms. Math Probl Eng 2018:6357935. https://doi.org/10.1155/2018/6935
Törn A, Žilinskas A (1989) Global optimization, vol 350. Springer
Venter G (2010) Review of optimization techniques. In: Blockley R, Shyy W (eds) Encyclopedia of aerospace engineering, Wiley. https://core.ac.uk/download/pdf/37341665.pdf
Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896
Yu X, Gen M (2010) Introduction to evolutionary algorithms. Springer
Yu X, Gen M (2011) Introduction to evolutionary algorithms. Springer, London
Acknowledgements
The authors are thankful to the Deanship of Scientific Research at King Khalid University for awarding project ID: RGP.2/ 190/42, titled Advanced Computational Methods for Solving Complex Computer Science and Mathematical Engineering Problem.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
All authors have equally contributed to the research design, data analysis research summary and recommendation, written manuscript, and coordinated for submission of this paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest to report regarding the present study.
Additional information
Communicated by Jia-Bao Liu.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Noureen, A., Mashwani, W.K., Rehman, F. et al. Constrained optimization based on hybrid version of superiority of feasibility solution strategy. Soft Comput 26, 8117–8132 (2022). https://doi.org/10.1007/s00500-022-07169-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-022-07169-7