Skip to main content
Log in

An alternative computational optimization technique to solve linear and nonlinear Diophantine equations using discrete WQPSO algorithm

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The concept of computational optimization can be used to solve linear and nonlinear Diophantine equations. The goal of this article is to introduce an alternative technique, which is independent of greatest common divisor (g.c.d), to solve linear and nonlinear Diophantine equations by transforming the equations into discrete variable bound constrained optimization problems. To solve these optimization problems, weighted quantum-behaved particle swarm optimization (WQPSO) is developed into discrete variable form. Then, four linear and four nonlinear Diophantine equations are considered from recent literature and solved by using the discrete WQPSO algorithm. Next, the convergence histories of each of the problems are shown. Finally, the results are compared with the same reported by numerous researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

In this paper, no data have to use from any source.

References

  • Abo-Hammour Z, Albadarneh R, Saraireh MS (2010) Solution of Laplace equation using continuous genetic algorithms. Kuwait J Sci Eng 37(2A):1–15

    MathSciNet  MATH  Google Scholar 

  • Abraham S, Sanyal S, Sanglikar M (2010) Particle swarm optimisation based Diophantine equation solver. Int J Bio-Inspir Comput 2(2):100–114

    Google Scholar 

  • Agushak JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570

    MathSciNet  MATH  Google Scholar 

  • Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H (2021) RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079

    Google Scholar 

  • Burton DM (2010) Elementary number theory. The McGraw-Hill Companies, Inc., New York

    Google Scholar 

  • Dehghani M, Hubálovský Š, Trojovský P (2022) Tasmanian devil optimization: a new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access 10:19599–19620

    Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, New Jersey, pp 39–43

  • Erdoğmuş P (2018) A new solution approach for non-linear equation systems with grey wolf optimizer. Sakarya Univ J Comput Inf Sci 1(3):1–11

    Google Scholar 

  • Fatimah BO, Senapon WA, Adebowale AM (2015) Solving ordinary differential equations with evolutionary algorithms. Open J Optim 4(03):69

    Google Scholar 

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    MathSciNet  MATH  Google Scholar 

  • Goldberg DE (2006) Genetic algorithms. Pearson Education, India

    Google Scholar 

  • Hansen P, Mladenovic N, Perez JAM (2010) Variable neighbourhood search: methods and applications. Ann Oper Res 175(1):367–407

    MathSciNet  MATH  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Google Scholar 

  • Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge

    Google Scholar 

  • Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J ACM (JACM) 8(2):212–229

    MATH  Google Scholar 

  • Imomov A, Khodjaev YT (2020) On some methods for solution of linear Diophantine equations. Univ J Math Appl 3(2):86–92

    Google Scholar 

  • Jebari K, Madiafi M, Moujahid AE (2013) Solving poisson equation by genetic algorithms. Int J Comput Appl 83(5):1–6

    Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    MathSciNet  MATH  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    MathSciNet  MATH  Google Scholar 

  • Kumar S, Gupta S, Kishan H (2018) On the non-linear Diophantine equation 61x + 67y = z 2 and 67 x + 73y = z 2. Ann Pure Appl Math 18(1):91–94

    Google Scholar 

  • Kumar N, Shaikh AA, Mahato SK, Bhunia AK (2021a) Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations. Expert Syst Appl 172:114646

    Google Scholar 

  • Kumar N, Shaikh AA, Mahato SK, Bhunia AK (2021b) Development of some techniques for solving system of linear and nonlinear equations via hybrid algorithm. Expert Syst 38(3):e12669

    Google Scholar 

  • Lewis RM, Torczon V, Trosset MW (2000) Direct search methods: then and now. J Comput Appl Math 124(1–2):191–207

    MathSciNet  MATH  Google Scholar 

  • Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gener Comput Syst 111:300–323

    Google Scholar 

  • Liashchynskyi P, Liashchynskyi P (2019) Grid search, random search, genetic algorithm: a big comparison for NAS. arXiv preprint arXiv:1912.06059

  • Lourenco HR, Martin OC, Stutzle T (2019) Iterated local search: framework and applications. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. Springer, Berlin, pp 129–168

    Google Scholar 

  • Lukemire J, Mandal A, Wong WK (2019) d-QPSO: a quantum-behaved particle swarm technique for finding d-optimal designs with discrete and continuous factors and a binary response. Technometrics 61(1):77–87

    MathSciNet  Google Scholar 

  • Mafteiu-Scai LO, Mafteiu-Scai EJ (2013) Solving linear systems of equations using a memetic algorithm. Int J Comput Appl 975:8887

    MATH  Google Scholar 

  • Man YK (2020) A forward approach for solving linear Diophantine equation. Int J Math Educ Sci Technol 51(8):1284–1288. https://doi.org/10.1080/0020739X.2020.1745915

    Article  MathSciNet  MATH  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  • Mo Y, Liu H, Wang Q (2009) Conjugate direction particle swarm optimization solving systems of nonlinear equations. Comput Math Appl 57(11–12):1877–1882

    MathSciNet  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    MathSciNet  MATH  Google Scholar 

  • Pourrajabian A, Ebrahimi R, Mirzaei M, Shams M (2013) Applying genetic algorithms for solving nonlinear algebraic equations. Appl Math Comput 219(24):11483–11494

    MathSciNet  MATH  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  • Sadollah A, Eskandar H, Kim JH (2015) Approximate solving of nonlinear ordinary differential equations using least square weight function and metaheuristic algorithms. Eng Appl Artif Intell 40:117–132

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  • Sun J, Fang W, Wu X, Palade V, Xu W (2012) Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol Comput 20:349–393

    Google Scholar 

  • Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), vol 1. IEEE, New Jersey, pp 325–331

  • Tu J, Chen H, Wang M, Gandomi AH (2021) The colony predation algorithm. J Bionic Eng 18(3):674–710

    Google Scholar 

  • Turgut OE, Turgut MS, Coban MT (2014) Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations. Comput Math Appl 68(4):508–530

    MathSciNet  MATH  Google Scholar 

  • Wang GG, Deb S, Coelho LDS (2018) Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int J Bio-Inspir Comput 12(1):1–22

    Google Scholar 

  • Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014

    Google Scholar 

  • Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd international symposium on computational and business intelligence (ISCBI). IEEE, New Jersey, pp 1–5

  • Xi M, Sun J, Xu W (2008) An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl Math Comput 205(2):751–759

    MATH  Google Scholar 

  • Yang XS (2020) Nature-inspired optimization algorithms. Academic Press, Cambridge

    MATH  Google Scholar 

  • Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864

    Google Scholar 

  • Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, New Jersey, pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  • Zhang J, Song W, Jiang B et al (2018) Measurement of lumber moisture content based on PCA and GS-SVM. J for Res 29(2):1–8

    Google Scholar 

  • Zuckerman N (1980) An introduction to the theory of numbers, 3rd edn. Wiley Publication, Hoboken

    MATH  Google Scholar 

Download references

Acknowledgements

Author is thankful to the Editor and the anonymous Reviewers for giving their valuable comments and suggestions for improving the quality of this work.

Funding

The authors has not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Kumar.

Ethics declarations

Conflict of interest

The authors has not disclosed any competing interests.

Ethical approval

No animals are involved to carry out this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N. An alternative computational optimization technique to solve linear and nonlinear Diophantine equations using discrete WQPSO algorithm. Soft Comput 26, 12531–12544 (2022). https://doi.org/10.1007/s00500-022-07199-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07199-1

Keywords