Skip to main content
Log in

Reservoir water level forecasting using wavelet support vector regression (WSVR) based on teaching learning-based optimization algorithm (TLBO)

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

As the importance of freshwater preservation, a new hybrid approach is applied in this study. The wavelet support vector regression based on the teaching learning-based algorithm (WSVR-TLBO) is used as the proposed approach for the water level prediction of the Zayanderud dam in Iran. This model is promoted by the wavelet transform and the optimization algorithm which have prompted the error reduction and the accuracy promotion of the SVR model. In the hybrid model, the correlation coefficient (R) and mean square error (MSE) are improved by 12% and 94%, respectively, rather than SVR. The four error criteria are employed for evaluation, and their results are ameliorated in the use of the WSVR-TLBO model. Besides the SVR model, the feed-forward neural network (FFNN), autoregressive integrated moving average (ARIMA), and generalized regression neural network (GRNN) models are also applied to forecast the reservoir water level. The comparison of these models with the hybrid one is performed, and the results show the superiority of the hybrid model. The current approach's error criteria (MSE) are decreased by 67%, 94%, 92%, 92%, and 90% rather than the WSVR, SVR, ARIMA, GRNN, and FFNN models, respectively. All the error criteria reveal that the hybrid approach of this study significantly forecasted the reservoir water level with high accuracy and is outperformed by other compared models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Enquiries about data availability should be directed to the authors.

References

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Malekpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekpour, M.M., Malekpoor, H. Reservoir water level forecasting using wavelet support vector regression (WSVR) based on teaching learning-based optimization algorithm (TLBO). Soft Comput 26, 8897–8909 (2022). https://doi.org/10.1007/s00500-022-07296-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07296-1

Keywords