Abstract
This paper is an introduction to soft partial metric spaces. The aim is to create a soft topological model for a programming language described as a soft logic system, like in classical partial metric studies. Since the soft metric spaces have Hausdorff properties, they are not useful in examining non-Hausdorff soft topologies. This paper proposes a generalized soft metric for non-Hausdorff soft topologies and a new approach that guides how to expand soft metric implements like the Banach theorem to such topologies.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Abbas M, Murtaza G, Romaguera S (2016) On the fixed point theory of soft metric spaces. Fixed Point Theory Appl 17:11. https://doi.org/10.1186/s13663-016-0502-y
Aktaş H, Çağman N (2007) Soft sets and soft groups. Inform Sci 177(13):2726–2735. https://doi.org/10.1016/j.ins.2006.12.008
Alcantud JCR (2020) Soft open bases and a novel construction of soft topologies from bases for topologies. Mathematics 8(672):12. https://doi.org/10.3390/math8050672
Aldemir B, Güner E, Aydoğdu E, Aygün H (2020) Some fixed point theorems in partial fuzzy metric spaces. J Inst Sci Technol 10:2889–2900. https://doi.org/10.21597/jist.716207
Altıntaş İ, Taşköprü K (2020) Compactness of soft cone metric space and fixed point theorems related to diametrically contractive mapping. Turkish J Math 44(6):2199–2216. https://doi.org/10.3906/mat-2004-63
Altıntaş İ, Şimşek D, Taşköprü K (1880) Taköprü K (2017) Topology of soft cone metric spaces. AIP Conf Proc 1:030006. https://doi.org/10.1063/1.5000605
Altun İ, Sola F, Şimşek H (2010) Generalized contractions on partial metric spaces. Topology Appl 18(1):2778–2785. https://doi.org/10.1016/j.topol.2010.08.017
Aydoğdu E, Aldemir B, Güner E, Aygün H, (2021) Some properties of partial fuzzy metric topology. In: Intelligent and fuzzy techniques: smart and innovative solutions. Springer International Publishing, Cham, pp 1267–1275
Aygünoğlu A, Aygün H (2012) Some notes on soft topological spaces. Neural Comput Appl 21(1):113–119. https://doi.org/10.1007/s00521-011-0722-3
Babitha KV, John SJ (2015) Studies on soft topological spaces. J Intell Fuzzy Syst 28(4):1713–1722. https://doi.org/10.3233/IFS-141457
Bukatin M, Kopperman R, Matthews S, Pajoohesh H (2009) Partial metric spaces. Amer Math Monthly 116(8):708–718. https://doi.org/10.2307/40391197
Çetkin V, Aygün H (2016) On L-soft merotopies. Soft Comput 20:4779–4790. https://doi.org/10.1007/s00500-016-2037-x
Çetkin V, Güner E, Aygün H (2020) On 2S-metric spaces. Soft Comput 24:12731–12742. https://doi.org/10.1007/s00500-020-05134-w
Chen D, Tsang ECC, Yeung DS, Wang X (2005) The parameterization reduction of soft sets and its applications. Comput Math Appl 49(5):757–763. https://doi.org/10.1016/j.camwa.2004.10.036
Chiney M, Samanta S (2019) Soft topology redefined. J Fuzzy Math 27(2):459–486
Das S, Samanta SK (2012) Soft real sets, soft real numbers and their properties. J Fuzzy Math 20(3):551–576
Das S, Samanta SK (2013) On soft complex sets and soft complex numbers. J Fuzzy Math 21(1):195–216
Das S, Samanta SK (2013) On soft metric spaces. J Fuzzy Math 21(3):707–734
Feng F, Li C, Davvaz B, Ali MI (2010) Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput 14:899–911. https://doi.org/10.1007/s00500-009-0465-6
Georgiou DN, Megaritis AC (2014) Soft set theory and topology. Appl Gen Topol 15(1):93–109. https://doi.org/10.4995/agt.2014.2268
Guler AC, Yildirim ED, Ozbakir OB (2016) A fixed point theorem on soft G-metric spaces. J Nonlinear Sci Appl 9(3):885–894
Hazra H, Majumdar P, Samanta SK (2012) Soft topology. Fuzzy Inf Eng 4(1):105–115. https://doi.org/10.1007/s12543-012-0104-2
Hosseinzadeh H (2017) Fixed point theorems on soft metric spaces. J Fixed Point Theory Appl 19:1625–1647. https://doi.org/10.1007/s11784-016-0390-0
Hussain S, Ahmad B (2011) Some properties of soft topological spaces. Comput Math Appl 62(11):4058–4067. https://doi.org/10.1016/j.camwa.2011.09.051
Jun YB, Park CH (2008) Applications of soft sets in ideal theory of bck/bci-algebras. Inform Sci 178(11):2466–2475. https://doi.org/10.1016/j.ins.2008.01.017
Kandemir MB (2018) The concept of -algebraic soft set. Soft Comput 22:4353–43607. https://doi.org/10.1007/s00500-017-2901-3
Karapınar E, Erhan IM (2011) Fixed point theorems for operators on partial metric spaces. Appl Math Lett 11:1894–1899. https://doi.org/10.1016/j.aml.2011.05.013
Kopperman R, Matthews S, Pajoohesh H (2005) What do partial metrics represent? In: Spatial Representation: Discrete vs. Continuous Computational Models, (IBFI), Schloss Dagstuhl, Germany, Dagstuhl Seminar Proceedings, pp 1–4
Künzi HP, Pajoohesh H, Schellekens M (2006) Partial quasi-metrics. Theoret Comput Sci 365(3):237–246. https://doi.org/10.1016/j.tcs.2006.07.050
Maji PK, Roy AR, Biswas R (2002) An application of soft sets in a decision making problem. Comput Math Appl 44(8):1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X
Maji PK, Biswas R, Roy AR (2003) Soft set theory. Comput Math Appl 45(4):555–562. https://doi.org/10.1016/S0898-1221(03)00016-6
Majumdar P, Samanta SK (2010) On soft mappings. Comput Math Appl 60(9):2666–2672. https://doi.org/10.1016/j.camwa.2010.09.004
Matejdes M (2021) Methodological remarks on soft topology. Soft Comput 25:4149–4156. https://doi.org/10.1007/s00500-021-05587-7
Matejdes M (2021) Soft homogeneity of soft topological sum. Soft Comput 25:8875–8881. https://doi.org/10.1007/s00500-021-05924-w
Matthews SG (1994) Partial metric topology. Ann New York Acad Sci 728(1):183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 37(4):19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
Oltra S, Valero O (2004) Banach’s fixed point theorem for partial metric spaces. Rend Istit Mat Univ Trieste 36:17–26
Öztunç S, Aslan S (2019) Jungck type fixed point results for weakly compatible mappings in a rectangular soft metric space. J Ineq Appl 145:45. https://doi.org/10.1186/s13660-019-2096-5
O’Neill SJ (1995) Two topologies are better than one. University of Warwick, Tech. rep
Pei D, Miao D (2005) From soft sets to information systems. In: 2005 IEEE International Conference on Granular Computing, IEEE 2:617–621
Rabarison AF (2007) Partial metrics. Tech. rep., African Institute for Mathematical Sciences, University of Cape Town, supervised by Hans-Peter A. Künzi
Romaguera S, Schellekens M (2001) Weightable quasi-metric semigroups and semilattices. Electron Notes Theor Comput Sci 40:347–358. https://doi.org/10.1016/S1571-0661(05)80061-1
Schellekens M (2003) A characterization of partial metrizability: domains are quantifiable. Theoret Comput Sci 305(1):409–432. https://doi.org/10.1016/S0304-3975(02)00705-3
Shabir M, Naz M (2011) On soft topological spaces. Comput Math Appl 61(7):1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006
Tahat MK, Sidky F, Abo-Elhamayel M (2018) Soft topological soft groups and soft rings. Soft Comput 22:7143–7156. https://doi.org/10.1007/s00500-018-3026-z
Taşköprü K, Altıntaş İ (2021) A new approach for soft topology and soft function via soft element. Math Meth Appl Sci 44(9):7556–7570. https://doi.org/10.1002/mma.6354
Terepeta M (2019) On separating axioms and similarity of soft topological spaces. Soft Comput 23:1049–1057. https://doi.org/10.1007/s00500-017-2824-z
Varol BP, Shostak A, Aygün H (2012) A new approach to soft topology. Hacet J Math Stat 41(5):731–741
Wardowski D (2013) On a soft mapping and its fixed points. Fixed Point Theory Appl 182:11. https://doi.org/10.1186/1687-1812-2013-182
Waszkiewicz P (2003) Quantitative continuous domains. Appl Categ Structures 11:41–67. https://doi.org/10.1023/A:1023012924892
Yazar MI, Aras Gündüz Ç, Bayramov S (2016) Fixed point theorems of soft contractive mappings. Filomat 30(2):269–279
Zorlutuna Ì, Akdağ M, Min WK, Atmaca S (2012) Remarks on soft topological spaces. Ann Fuzzy Math Inform 3(2):171–185
Zou Y, Xiao Z (2008) Data analysis approaches of soft sets under incomplete information. Knowl-Based Syst 21(8):941–945. https://doi.org/10.1016/j.knosys.2008.04.004
Acknowledgements
The authors thank the referees for their care and contributing evaluations. This research is supported by Kyrgyz-Turkish Manas University (Project Number: KTMU-BAP-2019.FBE. 07).
Funding
The author(s) received no specific funding for this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Altıntaş, İ., Taşköprü, K. & Esengul kyzy, P. Soft partial metric spaces. Soft Comput 26, 8997–9010 (2022). https://doi.org/10.1007/s00500-022-07313-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-022-07313-3