Abstract
One of the most useful expansions of fuzzy sets for coping with information uncertainties is the Fermatean fuzzy sets. Under this environment, in this article, we define a novel extensions of fuzzy sets called n-fuzzy sets and introduce their relationship with intuitionistic fuzzy sets, Pythagorean fuzzy sets and Fermatean fuzzy sets. The n-fuzzy sets can deal with more uncertain situations than intuitionistic fuzzy sets, Pythagorean fuzzy sets and Fermatean fuzzy sets because of their larger range of describing the membership grades. Then, we provide the necessary set of operations for the n-fuzzy sets, as well as their various features. Furthermore, we present the notion of rough n-fuzzy topology. Moreover, we study the concepts of the rough n-fuzzy interior, closure and obtain some of their properties, respectively. Ultimately, we study the Sanchez’s approach for medical diagnosis and extend this concept with the notion of n-fuzzy set.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and materials
Enquiries about data availability should be directed to the authors.
References
Ahmad B, Kharal A (2009) On fuzzy soft sets. Adv Fuzzy Syst 2009:586507
Alcantud JCR (2021) Softarisons: theory and practice. Neural Comput Appl 33:6759–16771
Alcantud JCR (2022) The relationship between fuzzy soft and soft topologies. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-021-01225-4
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96
Atef M, Ali MI, Al-Shami TM (2021) Fuzzy soft covering-based multi-granulation fuzzy rough sets and their applications. Comput Appl Math 40(4):115. https://doi.org/10.1007/s40314-021-01501-x
Cağman N, Enginoğlu S, Çitak F (2011) Fuzzy soft set theory and its application. Iran J Fuzzy Syst 8(3):137–147
Chang CL (1968) Fuzzy topological spaces. J. Math. Anal. Appl. 24:182–190
Garg H, Kumar K (2018) Distance measures for connection number sets based on set pair analysis and its applications to decision making process. Appl Intell 48:3346–3359
Garg H, Kumar K (2018) An advance study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Comput 22:4959–4970
Garg H, Singh S (2018) A novel triangular interval type-2 intuitionistic fuzzy set and their aggregation operators. Iran J Fuzzy Syst 15:69–93
Gulzar M, Alghazzawi D, Mateen MH, Kausar N (2020) A certain class of t-intuitionistic fuzzy subgroups. IEEE Access 8:163260–163268. https://doi.org/10.1109/ACCESS.2020.3020366
Gulzar M, Mateen MH, Alghazzawi D, Kausar N (2020) A novel applications of complex intuitionistic fuzzy sets in group theory. IEEE Access 8:196075–196085. https://doi.org/10.1109/ACCESS.2020.3034626
Ibrahim HZ (2013) On a class of \(\alpha _{\gamma }\)-open sets in a topological space. Acta Sci Technol 35:539–545
Ibrahim HZ (2013) Operation on regular spaces. J Adv Stud Topol 4:138–149
Khalaf AB, Ibrahim HZ (2012) \(P_{\gamma }\)-Open sets and \(P_{\gamma,\beta }\)-continuous mappings in topological spaces. J Adv Stud Topol 3:102–110
Kirisci M (2017) Integrated and differentiated spaces of triangular fuzzy number. Fasc Math 59:75–89
Molodtsov D (1999) Soft set theory first results. Comput Math Appl 37:19–31
Pawlak Z (1982) Rough sets. Int J Inf Comput Sci 11:341–356
Sanchez E (1977) Solutions in composite fuzzy relation equation: application to Medical diagnosis in Brouwerian Logic. In: Gupta MM, Saridis GN, Gaines BR (eds) Fuzzy automata and decision process. Elsevier, North-Holland
Senapati T, Yager RR (2019) Some new operations over fermatean fuzzy numbers and application of fermatean fuzzy WPM in multiple criteria decision making. NFORMATICA 30:391–412
Senapati T, Yager RR (2019) Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng Appl Artif Intell 85:112–121
Senapati T, Yager RR (2020) Fermatean fuzzy sets. J Ambient Intell Hum Comput 11:663–674
Yager RR (2013) Pythagorean fuzzy subsets. Joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). IEEE, Edmonton, pp 57–61
Yang B (2022) Fuzzy covering-based rough set on two different universes and its application. Artif Intell Rev. https://doi.org/10.1007/s10462-021-10115-y
Yang B, Hu BQ (2018) Communication between fuzzy information systems using fuzzy covering-based rough sets. Int J Approx Reason 103:414–436
Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
Zarasiz Z (2015) Similarity measures of sequence of fuzzy numbers and fuzzy risk analysis. Adv Math Phys 2015:1–12. https://doi.org/10.1155/2015/724647
Zarasiz Z (2016) A contribution to the algebraic structure of fuzzy numbers. Ann Fuzzy Math Inf 12(2):205–219
Zarasiz Z (2018) A new approach to infinite matrices of interval numbers. Glob J Pure Appl Math 14(3):485–500
Acknowledgements
The author is grateful to the referees for their valuable suggestions which helped in modifying the first version of this paper.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Hariwan Z. Ibrahim (author) declares that he has no conflict of interest.
Human participants
This article does not contain any studies with human participants or animals performed by of the author.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
A. Proof of Theorem 2.2
Since for any two numbers \(m, r\in [0, 1]\), we have
and
Therefore, we get
Then, the space of n-fuzzy (for \(n= 4\) and 5) membership grades is larger than the space of intuitionistic membership grades, Pythagorean membership grades and Fermatean membership grades.
B. Proof of Theorem 2.4
Let \(x_i\in X\) and N be 4-FS. Suppose that that \(\pi _{N}(x_i) = 0\) for \(x_i\in X\), then we have the following:
-
$$\begin{aligned}{} & {} \begin{aligned} (1)&\quad (\delta _{N}(x_i))^{4} + (\theta _{N}(x_i))^{4} =1\\&\quad \Rightarrow -(\delta _{N}(x_i))^{4} = (\theta _{N}(x_i))^{4} -1\\&\quad \Rightarrow -(\delta _{N}(x_i))^{4} = ((\theta _{N}(x_i))^{2})^{2} -1\\&\quad \Rightarrow -(\delta _{N}(x_i))^{4} = ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\\&\quad \Rightarrow \left| (\delta _{N}(x_i))^{4}\right| = \left| ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\right| \\&\quad \Rightarrow \left| \delta _{N}(x_i)\right| ^{4} = \left| ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\right| \\&\quad \Rightarrow \left| \delta _{N}(x_i)\right| = \root 4 \of {\left| ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\right| }. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
C. Proof of Theorem 2.9
From Definition 2.6, we have:
-
$$\begin{aligned}&\begin{aligned} (1)\quad N_1 \oplus N_2&= \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) \\&\quad \left( \root n \of {\delta _{N_2}^{n}+\delta _{N_1}^{n} -\delta _{N_2}^{n}\delta _{N_1}^{n}}, \theta _{N_2}\theta _{N_1}\right) \\&= N_2 \oplus N_1. \end{aligned} \end{aligned}$$
-
$$\begin{aligned}&\begin{aligned} (2) \quad N_1 \otimes N_2&= \left( \delta _{N_1}\delta _{N_2}, \root n \of {\theta _{N_1}^{n}+\theta _{N_2}^{n} -\theta _{N_1}^{n}\theta _{N_2}^{n}}\right) \\&= \left( \delta _{N_2}\delta _{N_1}, \root n \of {\theta _{N_2}^{n}+\theta _{N_1}^{n} -\theta _{N_2}^{n}\theta _{N_1}^{n}}\right) \\&= N_2 \otimes N_1. \end{aligned} \end{aligned}$$
-
$$\begin{aligned}&\begin{aligned} (3)\quad N_1\cap N_2&= (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\\&=(min\{\delta _{N_2},\delta _{N_1}\},max\{\theta _{N_2},\theta _{N_1}\})\\&=N_2\cap N_1. \end{aligned} \end{aligned}$$
-
(4) We can proof in a similar fashion to (3).
D. Proof of Theorem 2.10
From Definition 2.6, we have:
-
$$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\cap N_2)\cup N_2\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\cup (\delta _{N_2},\theta _{N_2})\\&\quad =(max\{min\{\delta _{N_1},\delta _{N_2}\}, \delta _{N_2}\},\\&\qquad \qquad min\{max\{\theta _{N_1},\theta _{N_2}\},\theta _{N_2}\})\\&\quad = (\delta _{N_2},\theta _{N_2})=N_{2}. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
E. Proof of Theorem 2.11
For the three n-FSs \(N, N_1\) and \(N_2\), and \(\zeta , \zeta _1, \zeta _2 > 0\), we have:
And
F. Proof of Theorem 2.12
For the three n-FSs \(N_1, N_2\), \(N_3\), and \(\zeta > 0\), we have:
-
$$\begin{aligned}&\begin{aligned} (1)\quad&N_1\cap (N_2\cap N_3)\\&\quad = (\delta _{N_1}, \theta _{N_1})\cap (min\{\delta _{N_2},\delta _{N_3}\},max\{\theta _{N_2},\theta _{N_3}\})\\&\quad = (min\{\delta _{N_1},min\{\delta _{N_2},\delta _{N_3}\}\},\\&\qquad max\{\theta _{N_1},max\{\theta _{N_2},\theta _{N_3}\}\})\\&\quad = (min\{min\{\delta _{N_1},\delta _{N_2}\},\delta _{N_3}\},\\&\qquad max\{max\{\theta _{N_1},\theta _{N_2}\},\theta _{N_3}\})\\&\quad = (min\{\delta _{N_1},\delta _{N_2}\}, max\{\theta _{N_1},\theta _{N_2}\})\cap (\delta _{N_3}, \theta _{N_3})\\&\quad =(N_1\cap N_2) \cap N_3. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
-
$$\begin{aligned}&\begin{aligned} (3)\quad&\zeta (N_1\cup N_2)\\&\quad = \zeta (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad = \left( \root n \of {1-(1-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\})^{\zeta }}, min\{\theta _{N_1}^{\zeta },\theta _{N_2}^{\zeta }\}\right) . \end{aligned} \end{aligned}$$
And
$$\begin{aligned}&\begin{aligned}&\zeta N_1\cup \zeta N_2\\&\quad = \left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }}, \theta _{N_1}^{\zeta }\right) \cup \left( \root n \of {1-(1-\delta _{N_2}^{n})^{\zeta }}, \theta _{N_2}^{\zeta }\right) \\&\quad =\left( max\{\root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }}, \root n \of {1-(1-\delta _{N_2}^{n})^{\zeta }}\},min\{\theta _{N_1}^{\zeta }, \theta _{N_2}^{\zeta }\}\right) \\&\quad = \left( \root n \of {1-(1-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\})^{\zeta }},min\{\theta _{N_1}^{\zeta }, \theta _{N_2}^{\zeta }\}\right) =\zeta (N_1\cup N_2). \end{aligned} \end{aligned}$$ -
(4) We can proof in a similar fashion to (3).
G. Proof of Theorem 2.13
For the three n-FSs \(N, N_1\), \(N_2\), and \(\zeta > 0\), we have:
-
$$\begin{aligned} \begin{aligned} (1)\quad&(N_1 \cap N_2)^{c}\\&\quad = (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})^{c}\\&\quad = (max\{\theta _{N_1},\theta _{N_2}\}, min\{\delta _{N_1},\delta _{N_2}\})\\&\quad = (\theta _{N_1},\delta _{N_1})\cup (\theta _{N_2},\delta _{N_2})\\&\quad = N_1^{c} \cup N_2^{c}. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
-
$$\begin{aligned} \begin{aligned} (1)\quad&(N_1 \oplus N_2)^{c}\\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) ^{c}\\&\quad = \left( \theta _{N_1}\theta _{N_2}, \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}\right) \\&\quad = (\theta _{N_1},\delta _{N_1})\otimes (\theta _{N_2},\delta _{N_2})\\&\quad = N_1^{c} \otimes N_2^{c}. \end{aligned} \end{aligned}$$
-
(4) We can proof in a similar fashion to (3).
-
$$\begin{aligned} \begin{aligned} (1)\quad (N^{c})^{\zeta }&= (\theta _{N},\delta _{N})^{\zeta }\\&=\left( \theta _{N}^{\zeta }, \root n \of {1-(1-\delta _{N}^{n})^{\zeta }}\right) \\&=\left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta }}, \theta _{N}^{\zeta }\right) ^{c}\\&=(\zeta N)^{c}. \end{aligned} \end{aligned}$$
-
(6) We can proof in a similar fashion to (5).
H. Proof of Theorem 2.14
From Definition 2.6, we have:
-
$$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\cap N_2)\oplus N_3\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\oplus (\delta _{N_3},\theta _{N_3})\\&\quad =\left( \root n \of {min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+\delta _{N_3}^{n}-\delta _{N_3}^{n}min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}},\right. \\&\qquad \left. max\{\theta _{N_1},\theta _{N_2}\}\theta _{N_3}\right) \\&\quad =\left( \root n \of {(1-\delta _{N_3}^{n})min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+\delta _{N_3}^{n}}, \right. \\&\quad \left. max\{\theta _{N_1}\theta _{N_3},\theta _{N_2}\theta _{N_3}\}\right) . \end{aligned} \end{aligned}$$
And
$$\begin{aligned} \begin{aligned}&(N_1\oplus N_3)\cap (N_2\oplus N_3)\\&\quad =\left( \root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}}, \theta _{N_1}\theta _{N_3}\right) \\&\qquad \cap \left( \root n \of {\delta _{N_2}^{n}+\delta _{N_3}^{n} -\delta _{N_2}^{n}\delta _{N_3}^{n}}, \theta _{N_2}\theta _{N_3}\right) \\&\quad =\left( min\{\root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}},\right. \\&\qquad \left. \root n \of {\delta _{N_2}^{n}+\delta _{N_3}^{n} -\delta _{N_2}^{n}\delta _{N_3}^{n}}\}, max\{\theta _{N_1}\theta _{N_3}, \theta _{N_2}\theta _{N_3}\}\right) \\&\quad =\left( min\{\root n \of {(1-\delta _{N_3}^{n})\delta _{N_1}^{n}+\delta _{N_3}^{n}},\right. \\&\qquad \left. \root n \of {(1-\delta _{N_3}^{n})\delta _{N_2}^{n}+\delta _{N_3}^{n}}\}, max\{\theta _{N_1}\theta _{N_3}, \theta _{N_2}\theta _{N_3}\}\right) \\&\quad =\left( \root n \of {(1-\delta _{N_3}^{n})min\{\delta _{N_1}^{n}, \delta _{N_2}^{n}\}+\delta _{N_3}^{n}},\right. \\&\qquad \left. max\{\theta _{N_1}\theta _{N_3}, \theta _{N_2}\theta _{N_3}\}\right) . \end{aligned} \end{aligned}$$Thus, \((N_1\cap N_2)\oplus N_3=(N_1\oplus N_3)\cap (N_2\oplus N_3)\).
-
(2) We can proof in a similar fashion to (1).
-
$$\begin{aligned} \begin{aligned} (3)\quad&(N_1\cap N_2)\otimes N_3\\&\quad = (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\otimes N_3\\&\quad =\left( min\{\delta _{N_1},\delta _{N_2}\}\delta _{N_3},\right. \\&\qquad \left. \root n \of {max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}+\theta _{N_3}^{n}-\theta _{N_3}^{n}max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}}\right) \\&\quad =\left( min\{\delta _{N_1}\delta _{N_3},\delta _{N_2}\delta _{N_3}\},\right. \\&\qquad \left. \root n \of {(1-\theta _{N_3}^{n})max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\} +\theta _{N_3}^{n}}\right) . \end{aligned} \end{aligned}$$
And
$$\begin{aligned} \begin{aligned}&(N_1\otimes N_3)\cap (N_2\otimes N_3)\\&\quad =\left( \delta _{N_1}\delta _{N_3}, \root n \of {\theta _{N_1}^{n}+\theta _{N_3}^{n} -\theta _{N_1}^{n}\theta _{N_3}^{n}}\right) \\&\qquad \cap \left( \delta _{N_2}\delta _{N_3}, \root n \of {\theta _{N_2}^{n}+\theta _{N_3}^{n} -\theta _{N_2}^{n}\theta _{N_3}^{n}}\right) \\&\quad =\left( \delta _{N_1}\delta _{N_3}, \root n \of {(1-\theta _{N_3}^{n})\theta _{N_1}^{n} +\theta _{N_3}^{n}}\right) \\&\qquad \cap \left( \delta _{N_2}\delta _{N_3},\right. \\&\qquad \left. \root n \of {(1-\theta _{N_3}^{n})\theta _{N_2}^{n} +\theta _{N_3}^{n}}\right) \\&\quad =\left( min\{\delta _{N_1}\delta _{N_3},\delta _{N_2}\delta _{N_3}\},\right. \\&\qquad \left. max\left\{ \root n \of {(1-\theta _{N_3}^{n})\theta _{N_1}^{n} +\theta _{N_3}^{n}}, \root n \of {(1-\theta _{N_3}^{n})\theta _{N_2}^{n} +\theta _{N_3}^{n}}\right\} \right) \\&\quad =\left( min\{\delta _{N_1}\delta _{N_3},\delta _{N_2}\delta _{N_3}\},\right. \\&\qquad \left. \root n \of {(1-\theta _{N_3}^{n})max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\} +\theta _{N_3}^{n}}\right) . \end{aligned} \end{aligned}$$Thus, \((N_1\cap N_2)\otimes N_3=(N_1\otimes N_3)\cap (N_2\otimes N_3)\).
-
(5) We can proof in a similar fashion to (3).
I. Proof of Theorem 2.15
-
$$\begin{aligned} \begin{aligned} (1)\quad&N_1\oplus N_2\oplus N_3\\&\quad = (\delta _{N_1},\theta _{N_1})\oplus (\delta _{N_2},\theta _{N_2})\oplus (\delta _{N_3},\theta _{N_3})\\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) \oplus (\delta _{N_3},\theta _{N_3})\\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}+\delta _{N_3}^{n}-\delta _{N_3}^{n}(\delta _{N_1}^{n}+\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_2}^{n})}, \theta _{N_1}\theta _{N_2}\theta _{N_3}\right) \\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_3}^{n}-\delta _{N_2}^{n}\delta _{N_3}^{n}+\delta _{N_1}^{n}\delta _{N_2}^{n}\delta _{N_3}^{n}}, \theta _{N_1}\theta _{N_2}\theta _{N_3}\right) \\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}+\delta _{N_2}^{n}-\delta _{N_2}^{n}(\delta _{N_1}^{n}+\delta _{N_3}^{n}-\delta _{N_1}^{n}\delta _{N_3}^{n})}, \theta _{N_1}\theta _{N_2}\theta _{N_3}\right) \\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}}, \theta _{N_1}\theta _{N_3}\right) \oplus (\delta _{N_2},\theta _{N_2})\\&\quad =N_1\oplus N_3\oplus N_2. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
J. Proof of Theorem 2.20
Let \(s(N) = 0\). Then, \((\delta _{N}(x))^{n} = (\theta _{N}(x))^{n}\) implies that \(\delta _{N}(x) = \theta _{N}(x)\) for all \(x\in X\). Conversely, suppose that \(\delta _{N}(x) = \theta _{N}(x)\). It follows immediately that, for all \(x\in X\), \((\delta _{N}(x))^{n} = (\theta _{N}(x))^{n}\). Therefore, \((\delta _{N}(x))^{n} - (\theta _{N}(x))^{n}\)= 0. Thus, \(s(N) = 0\).
K. Proof of Theorem 2.21
-
(1)
Let \(a(N) = 1\). Then, \((\delta _{N}(x))^{n} + (\theta _{N}(x))^{n} = 1\). Since \(\pi _{N}(x) =\root n \of {1 - [(\delta _{N}(x))^{n} + (\theta _{N}(x))^{n}]}\), then \(\pi _{N}(x)= 0\). Conversely, suppose that \(\pi _{N}(x)= 0\). Then, it follow that, \((\delta _{N}(x))^{n} + (\theta _{N}(x))^{n}= 1\) implies \(a(N) = 1\).
-
(2)
Let \(a(N) = 0\). Then, \((\delta _{N}(x))^{n} = - (\theta _{N}(x))^{n}\) implies that \(\left| \delta _{N}(x)\right| ^{n}= \left| \theta _{N}(x)\right| ^{n}\) and hence \(\left| \delta _{N}(x)\right| = \left| \theta _{N}(x)\right| \).
L. Proof of Theorem 2.25
From Definition 2.1, we can obtain \(\delta _{N_1},\theta _{N_1},\delta _{N_2},\theta _{N_2}\in [0,1]\), \(0\le \delta _{N_1}^{n}+\theta _{N_1}^{n}\le 1\) and \(0\le \delta _{N_2}^{n}+\theta _{N_2}^{n}\le 1\), then
-
$$\begin{aligned} \begin{aligned} (1)\quad d(N_1, N_2)&=\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}-\delta _{N_2}^{n})^{2}+(\theta _{N_1}^{n}-\theta _{N_2}^{n})^{2}+ (\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}]}\\&=\sqrt{\frac{1}{2}[(\delta _{N_2}^{n}-\delta _{N_1}^{n})^{2}+(\theta _{N_2}^{n}-\theta _{N_1}^{n})^{2}+ (\pi _{N_2}^{n}-\pi _{N_1}^{n})^{2}]}\\&=d(N_2, N_1). \end{aligned} \end{aligned}$$
-
(2) Let \(d(N_1, N_2)={{\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}-\delta _{N_2}^{n})^{2}+(\theta _{N_1}^{n}-\theta _{N_2}^{n})^{2}+ (\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}]}=0}}\), then we get \((\delta _{N_1}^{n}-\delta _{N_2}^{n})=0\), \((\theta _{N_1}^{n}-\theta _{N_2}^{n})=0\) and \((\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}=0\), and thus \(\delta _{N_1}=\delta _{N_2}\), \(\theta _{N_1}=\theta _{N_2}\), and \(\pi _{N_1}=\pi _{N_2}\), that is, \(N_1 = N_2\).
-
(3) Obviously \(0\le d(N_1, N_2)\). Now,
$$\begin{aligned} \begin{aligned}&d(N_1, N_2)\\&\quad =\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}-\delta _{N_2}^{n})^{2}+(\theta _{N_1}^{n}-\theta _{N_2}^{n})^{2}+ (\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}]}\\&\quad =\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}\!-\!\delta _{N_2}^{n})^{2}\!+\!(\theta _{N_1}^{n}\!-\!\theta _{N_2}^{n})^{2}\!+\! [(\delta _{N_1}^{n}\!+\!\delta _{N_2}^{n})\!+\!(\theta _{N_1}^{n}\!+\!\theta _{N_2}^{n})]^{2}]}\\&\quad \le \sqrt{\frac{1}{2}[2\delta _{N_1}^{2n}+2\delta _{N_2}^{2n}+2\theta _{N_1}^{2n}+2\theta _{N_2}^{2n}+4\delta _{N_1}^{n}\theta _{N_1}^{n}+4\delta _{N_2}^{n}\theta _{N_2}^{n}]}\\&\quad =\sqrt{(\delta _{N_1}^{n}+\theta _{N_1}^{n})^{2}+(\delta _{N_2}^{n}+\theta _{N_2}^{n})^{2}}\le \sqrt{2}. \end{aligned} \end{aligned}$$
M. Proof of Theorem 2.27
-
(1)
Since \(\delta _{N_1}\ge \delta _{N_2}\) and \(\theta _{N_1}\le min\left\{ \theta _{N_2}, \frac{\theta _{N_2} \pi _{1}}{\pi _{2}}\right\} \), then \(\theta _{N_1} \pi _{2}\le \theta _{N_2} \pi _{1} \Rightarrow \theta _{N_1}^{n} \pi _{2}^{n}\le \theta _{N_2}^{n} \pi _{1}^{n} \Rightarrow \theta _{N_1}^{n}\theta _{N_2}^{n}+\theta _{N_1}^{n} \pi _{2}^{n}\le \theta _{N_1}^{n}\theta _{N_2}^{n}+\theta _{N_2}^{n} \pi _{1}^{n} \Rightarrow \theta _{N_1}^{n}(\theta _{N_2}^{n}+\pi _{2}^{n})\le \theta _{N_2}^{n}(\theta _{N_1}^{n}+ \pi _{1}^{n}) \Rightarrow \theta _{N_1}^{n}(1-\delta _{N_2}^{n})\le \theta _{N_2}^{n}(1-\delta _{N_1}^{n}) \Rightarrow \left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) ^{\zeta }\le \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }\) or \(\left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) \le \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) \Rightarrow 1- \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }+ \left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) ^{\zeta }\le 1\) or \(1- \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) + \left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) \le 1 \Rightarrow \left( \root n \of {1- \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}\right) ^{n}+ \left( \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) ^{n}\le 1\) or \(\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}\right) ^{n}+ \left( \frac{\theta _{N_1}}{\theta _{N_2}}\right) ^{n}\le 1\). Thus, \(N_1\ominus N_2\) and \(\zeta (N_1\ominus N_2) \) are n-FSs.
-
(2)
We can proof in a similar fashion to (2).
N. Proof of Theorem 555552.28
-
(1)
Since \(\delta _{N_1}\ge \delta _{N_2}\) and \(\theta _{N_1}\le min\left\{ \theta _{N_2}, \frac{\theta _{N_2} \pi _{1}}{\pi _{2}}\right\} \), then from Definitions 2.6 and 2.26, we get \(\zeta (N_1\ominus N_2) =\zeta \left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \) \(={{ \left( \root n \of {1-\left( 1-\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}, \left( \frac{\theta _{N_1}}{\theta _{N_2}}\right) ^{\zeta }\right) }}\) \(=\left( \root n \of {1-\left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}, \left( \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \right) \), and \(\zeta N_1\ominus \zeta N_2\) \(= \left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }}, \theta _{N_1}^{\zeta }\right) \ominus \left( \root n \of {1-(1-\delta _{N_2}^{n})^{\zeta }}, \theta _{N_2}^{\zeta }\right) \) \(= \left( \root n \of {\frac{1-(1-\delta _{N_1}^{n})^{\zeta }-1+(1-\delta _{N_2}^{n})^{\zeta }}{1-1+(1-\delta _{N_2}^{n})^{\zeta }}}, \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \) \(= \left( \root n \of {\frac{(1-\delta _{N_2}^{n})^{\zeta }-(1-\delta _{N_1}^{n})^{\zeta }}{(1-\delta _{N_2}^{n})^{\zeta }}}, \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \) \(= \left( \root n \of {1-\left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}, \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \). Hence, \(\zeta (N_1\ominus N_2) = \zeta N_1\ominus \zeta N_2\).
-
(2)
We can proof in a similar fashion to (1).
-
(3)
\(\zeta _{1} N\ominus \zeta _{2} N = \left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _{1}}}, \theta _{N}^{\zeta _{1}}\right) \ominus \left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _{2}}}, \theta _{N}^{\zeta _{2}}\right) = \left( \root n \of {\frac{1-(1-\delta _{N}^{n})^{\zeta _{1}}-1 +(1-\delta _{N}^{n})^{\zeta _{2}}}{1-1+(1-\delta _{N}^{n})^{\zeta _{2}}}}, \frac{\theta _{N}^{\zeta _{1}}}{\theta _{N}^{\zeta _{2}}}\right) =\left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _{1}-\zeta _{2}}}, \theta _{N}^{\zeta _{1}-\zeta _{2}}\right) =(\zeta _{1} - \zeta _{2}) N\).
-
(4)
We can proof in a similar fashion to (3).
O. Proof of Theorem 2.29
From Definitions 2.6 and 2.26, we can get
-
(1)
\((N_1\ominus N_2)^{c} = \left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) ^{c}=\left( \frac{\theta _{N_1}}{\theta _{N_2}}, \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}\right) =(\theta _{N_1},\delta _{N_1})\ominus (\theta _{N_2},\delta _{N_2})=N_1^{c}\oslash N_2^{c}\).
-
(2)
We can proof in a similar fashion to (1).
P. Proof of Theorem 2.30
From Definitions 2.6 and 2.26, we can get
-
$$\begin{aligned} \begin{aligned} (1)\quad&(N_1\cup N_2)\ominus (N_1\cap N_2)\\&\quad =(max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\qquad \ominus (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\\&\quad =\left( \root n \of {\frac{(max\{\delta _{N_1},\delta _{N_2}\})^{n}-(min\{\delta _{N_1},\delta _{N_2}\})^{n}}{1-min\{\delta _{N_1},\delta _{N_2}\})^{n}}},\right. \\&\qquad \qquad \left. \frac{min\{\theta _{N_1},\theta _{N_2}\}}{max\{\theta _{N_1},\theta _{N_2}\}}\right) \\&\quad =\left( \root n \of {\frac{max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}-min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}{1-min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \\&\quad =N_1\ominus N_2. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
Q. Proof of Theorem 2.31
From Definitions 2.6 and 2.26, we can get
-
$$\begin{aligned} \begin{aligned} (1)\quad&(N_1\cap N_2)\ominus (N_1\cup N_2)\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\\&\qquad \ominus (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad =\left( \root n \of {\frac{(min\{\delta _{N_1},\delta _{N_2}\})^{n}-(max\{\delta _{N_1},\delta _{N_2}\})^{n}}{1-max\{\delta _{N_1},\delta _{N_2}\})^{n}}},\right. \\&\qquad \qquad \left. \frac{max\{\theta _{N_1},\theta _{N_2}\}}{min\{\theta _{N_1},\theta _{N_2}\}}\right) \\&\quad =\left( \root n \of {\frac{min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}{1-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}}, \frac{\theta _{N_2}}{\theta _{N_1}}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_2}^{n}-\delta _{N_1}^{n}}{1-\delta _{N_1}^{n}}}, \frac{\theta _{N_2}}{\theta _{N_1}}\right) \\&\quad =N_2\ominus N_1. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
R. Proof of Theorem 2.32
From Definitions 2.6 and 2.26, we can get
-
$$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\ominus N_2)\oplus N_2\\&\quad = \left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \oplus (\delta _{N_2},\theta _{N_2})\\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}+\delta _{N_2}^{n} -\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}\delta _{N_2}^{n}}, \frac{\theta _{N_1}}{\theta _{N_2}}\theta _{N_2}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n} +\delta _{N_2}^{n}-\delta _{N_2}^{2n}-\delta _{N_1}^{n}\delta _{N_2}^{n}+\delta _{N_2}^{2n}}{1-\delta _{N_2}^{n}}}, \theta _{N_1}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}(1-\delta _{N_2}^{n})}{1-\delta _{N_2}^{n}}}, \theta _{N_1}\right) \\&\quad =(\delta _{N_1},\theta _{N_1})=N_1. \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
S. Proof of Theorem 2.34
From Definitions 2.6 and 2.33, we can get
-
$$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\cap N_2)\textcircled {a} N_3\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\textcircled {a} (\delta _{N_3},\theta _{N_3})\\&\quad = \left( \frac{min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+\delta _{N_3}^{n}}{2}, \frac{max\{\theta _{N_1}^{n},\theta _{N_2}\}+\theta _{N_3}^{n}}{2}\right) \\&\quad = \left( min\left\{ \frac{\delta _{N_1}^{n}+\delta _{N_3}^{n}}{2}, \frac{\delta _{N_2}^{n}+\delta _{N_3}^{n}}{2}\right\} , \right. \\&\qquad \left. max\left\{ \frac{\theta _{N_1}^{n}+\theta _{N_3}^{n}}{2}, \frac{\theta _{N_2}^{n}+\theta _{N_3}^{n}}{2}\right\} \right) \\&\quad = \left( \frac{\delta _{N_1}^{n}+\delta _{N_3}^{n}}{2}, \frac{\theta _{N_1}^{n}+\theta _{N_3}^{n}}{2}\right) \bigcap \left( \frac{\delta _{N_2}^{n}+\delta _{N_3}^{n}}{2}, \frac{\theta _{N_2}^{n}+\theta _{N_3}^{n}}{2}\right) \\&\quad =(N_1\textcircled {a} N_3)\cap (N_2\textcircled {a} N_3). \end{aligned} \end{aligned}$$
-
(2) We can proof in a similar fashion to (1).
-
$$\begin{aligned} \begin{aligned} (3)\quad&(N_1\textcircled {a} N_2)^{c}\\&\quad =\left( \frac{\delta _{N_1}^{n}+\delta _{N_2}^{n}}{2}, \frac{\theta _{N_1}^{n}+\theta _{N_2}^{n}}{2}\right) ^{c}\\&\quad =\left( \frac{\theta _{N_1}^{n}+\theta _{N_2}^{n}}{2}, \frac{\delta _{N_1}^{n}+\delta _{N_2}^{n}}{2}\right) \\&\quad =(\theta _{N_1},\delta _{N_1}) \textcircled {a} (\theta _{N_2},\delta _{N_2})= N_1^{c}\textcircled {a} N_2^{c}. \end{aligned} \end{aligned}$$
-
(4) Since for any two real numbers c and d, we have \(min(c,d)+max(c,d)= c + d\), and \(min(c,d)\cdot max(c,d)= c \cdot d\). Now,
$$\begin{aligned}&(N_1\cap N_2)\oplus (N_1\cup N_2)\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\oplus (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad =(\root n \of {min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+ max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}-min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\} max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}},\\&\qquad max\{\theta _{N_1},\theta _{N_2}\}min\{\theta _{N_1},\theta _{N_2}\})=(\root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}). \end{aligned}$$And
$$\begin{aligned}&(N_1\cap N_2)\otimes (N_1\cup N_2)\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\otimes (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\}max\{\delta _{N_1},\delta _{N_2}\},\\&\qquad \root n \of {max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}+ min\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}-max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\} min\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}})\\&\quad =(\delta _{N_1}\delta _{N_2}, \root n \of {\theta _{N_1}^{n}+\theta _{N_2}^{n}-\theta _{N_1}^{n}\theta _{N_2}^{n}}). \end{aligned}$$Thus,
$$\begin{aligned}&\left( (N_1\cap N_2)\oplus (N_1\cup N_2)\right) \textcircled {a} \left( (N_1\cap N_2)\otimes (N_1\cup N_2)\right) \\&\quad =\left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) \\&\qquad \textcircled {a} \left( \delta _{N_1}\delta _{N_2}, \root n \of {\theta _{N_1}^{n}+\theta _{N_2}^{n}-\theta _{N_1}^{n}\theta _{N_2}^{n}}\right) \\&\quad =\left( \frac{\delta _{N_1}^{n}+\delta _{N_2}^{n}}{2}, \frac{\theta _{N_1}^{n}+\theta _{N_2}^{n}}{2}\right) \\&\quad =N_1\textcircled {a} N_2. \end{aligned}$$
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ibrahim, H.Z. New extensions of fuzzy sets with applications to rough topology and medical diagnosis. Soft Comput 27, 821–835 (2023). https://doi.org/10.1007/s00500-022-07613-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-022-07613-8