Skip to main content
Log in

Machine learning prediction of sediment yield index

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Sediment output affects soil health maintenance, reservoir sustainability, environmental contamination, and natural resource preservation. Three different algorithms, the artificial neural networks-radial basis function (ANN-RBF), Artificial Neural Networks-Multilayer Perceptron, M5P tree, were used for this purpose in the Narmada river watersheds, India. For this purpose, fifteen different scenarios are considered as inputs to the models. For selecting the best-fit model, the performance of selected models was evaluated using performance criteria such as root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The results indicated that the ANN-RBF models outperformed the other models in terms of accuracy, with RMSE, MAE and R2 of 26.72, 19.84 and 0.98, respectively. The current study’s findings support the applicability of the proposed methodology for modeling the sediment yield index and encourage the use of these methods in alternative hydrological modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abba SI, Abdulkadir RA, Sh. Sammen S, Usman AG, Meshram SG, Malik A, Shahid S (2021) Comparative implementation between neuro-emotional genetic algorithm and novel ensemble computing techniques for modelling dissolved oxygen concentration. Hydrol Sci J 66(10):1584–1596. https://doi.org/10.1080/02626667.2021.1937179

  • Abo-Hammour Z, Alsmadi O, Momani S, Abu Arqub O (2013) A genetic algorithm approach for prediction of linear dynamical systems. Math Probl Eng. https://doi.org/10.1155/2013/831657

    Article  Google Scholar 

  • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407:28–40

    Google Scholar 

  • AISLUS (1977) Priority delineation, Matatilla RVP, U.P Report No. Agri. 484

  • AISLUS (1991) Methodology of priority delineation survey, All India Soil & Land Use Survey Technical Bulletin 9, Department of Agriculture and Cooperation, New Delhi India

  • Alp M, Cigizoglu HK (2007) Suspended sediment load simulation by two artificial neural network methods using hydro meteorological data. Environ Modell Soft 22:2–13

    Google Scholar 

  • Anctil F, Michel C, Perrin C, Andréassian V (2004) A soil moisture index as an auxiliary ANN input for stream flow forecasting. J Hydrol 286:155–167

    Google Scholar 

  • Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415. https://doi.org/10.1016/j.ins.2014.03.128

    Article  MathSciNet  MATH  Google Scholar 

  • Arqub OA, Singh J, Alhodaly M (2020) Adaptation of kernel functions-based approach with Atangana–Baleanu–Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations. Math Methods Appl Sci. https://doi.org/10.1002/mma.7228

    Article  Google Scholar 

  • Arqub OA, Singh J, Maayah B, Alhodaly M (2021) Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator. Math Methods Appl Sci. https://doi.org/10.1002/mma.7305

    Article  Google Scholar 

  • ASCE (2000) Task- Committee. Artificial neural networks in hydrology-I: Preliminary concepts. J Hydrol Eng 5:115–123

    Google Scholar 

  • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318:7–16

    Google Scholar 

  • Awad M, Khanna R (2015) Support vector regression. In: Efficient learning machines. Apress, Berkeley. https://doi.org/10.1007/978-1-4302-5990-9_4

  • Barzegar R, Fijani E, Moghaddam AA, Tziritis E (2017) Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Sci Total Environ 599:20–31

    Google Scholar 

  • Bhattacharya B, Solomatine DP (2005) Neural networks and M5 model trees in modeling water level-discharge relationship. Neurocomputing 63:381–396. https://doi.org/10.1016/j.neucom.2004.04.016

  • Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Exp Syst Appl 36(4):7624–7629

    Google Scholar 

  • Besaw LE, Rizzo DM, Bierman PR, Hackett WR (2010) Advances in ungauged stream flow prediction using artificial neural networks. J Hydrol 386:27–37

    Google Scholar 

  • Chau KW, Wu CL (2010) A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J Hydroinform 12:458–473

    Google Scholar 

  • Chen SM, Wang YM, Tsou I (2013) Using artificial neural network approach for modelling rainfall–runoff due to typhoon. J Earth Syst Sci 122(2):399–405

    Google Scholar 

  • Chiang YM, Chang LC, Chang FJ (2004) Comparison of static-Feed forward and dynamic-feedback neural networks for rainfall—runoff modeling. J Hydrol 290:297–311

    Google Scholar 

  • Cohen S, Intrator N (2002) A hybrid projection based and radial basis function architecture: initial values and global optimization. Pattern Anal Appl 2:113–120

  • Cohen S, Intrator N (2003) A study of ensemble of hybrid networks with strong regularization. In: Windeatt T, Roli F (eds) Multiple classifier systems. MCS 2003. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, vol 2709. https://doi.org/10.1007/3-540-44938-8_23

  • Choudhry RS, Sharma PD (1998) Erosion hazard assessment and treatment prioritization of Giri river catchment, North Western Himalayas. Indian J Soil Conserv 26(1):6–11

    Google Scholar 

  • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv Water Resour 27:185–195

    Google Scholar 

  • Cigizoglu HK, Alp M (2006) Generalized regression neural network in modelling river sediment yield. Adv Eng Softw 37:63–68

    Google Scholar 

  • Darabi H, Mohamadi S, Karimidastenaei Z et al (2021) Prediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing models. Soft Comput 25:7609–7626. https://doi.org/10.1007/s00500-021-05721-5

  • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309:229–240

    Google Scholar 

  • Delmas M, Olivier C, Mouchel JM, Manuel G (2009) A method for developing a large-scale sediment yield index for European river basins. J Soils Sedim 9:613–626

    Google Scholar 

  • Ebtehaj I, Bonakdari H, Shamshirband S, Mohammadi K (2016) A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer. Flow Measure Instrum 47:19–27

    Google Scholar 

  • Elkiran G, Nourani V, Abba SI (2019) Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.123962

    Article  Google Scholar 

  • Faruk DO (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Engg Appl of Arti Intell 24(4):586–594

    MathSciNet  Google Scholar 

  • Fath AH, Madanifar F, Abbasi M (2018) Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum. https://doi.org/10.1016/j.petlm.2018.12.002

    Article  Google Scholar 

  • Fath AH, Farshid M, Masood A (2020) Implementation of multilayer perceptron (MLP) andradial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oilsystems. Petroleum 6(1):80–91

    Google Scholar 

  • Flaxman EM (1971) Sediment yield Predictive Equation, Soil Conservation Service, Technical Service Centre Advisory –POI Washington D.C.U.S.D.A

  • Gajbhiye S, Mishra SK, Pandey A (2015) Simplified sediment yield index model incorporating parameter CN. Arab J Geosci 8(4):1993–2004

    Google Scholar 

  • Garde RJ, Kothari UC (1987) Sediment yield estimation. Journal of Irrigation Power (india) 44(3):97–123

    Google Scholar 

  • Ghorbani M, Khatibi R, Hosseini B, Bilgili M (2013) Relative importance of parameter saffecting wind speed prediction using artificial neural networks. Theor Appl Climatol 114:107–114

    Google Scholar 

  • Ghorbani MA, Shamshirband S, Haghi DZ, Azani A, Bonakdari H, Ebtehaj I (2017) Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res 172:32–38. https://doi.org/10.1016/j.still.2017.04.009

  • Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water Resour Res 51:3031–3051

    Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    MATH  Google Scholar 

  • Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour Res 31:2517–2530

    Google Scholar 

  • Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50:683–696

    Google Scholar 

  • Kisi O (2008) Constructing neural network sediment estimation models using a data-driven algorithm. Math Comput Simul 79:94–103

    MATH  Google Scholar 

  • Kisi O, Shiri J (2012) River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Comput Geosci 43:73–82. https://doi.org/10.1016/j.cageo.2012.02.007

    Article  Google Scholar 

  • Kisi O, Yuksel I, Dogan E (2008) Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques/Modélisation de la charge journalière en matières en suspension dans des rivières turques à l’aide de plusieurs techniques empiriques. Hydrol Sci J 53:1270–1285

    Google Scholar 

  • Kumar S (1985) Reservoir sedimentation in Proc. Short term course on planning, design and operation of reservoir, Patna University, p 8

  • Lee S, Song KY, Kim Y, Park I (2012) Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeo J 20:1511–1527

    Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydro-climatic model validation. Water Res Res 35(1):233–241

    Google Scholar 

  • Liu Z, Zhou P, Chen G, Guo L (2014) Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly stream flow forecasting. J Hydrol 519:2822–2831

    Google Scholar 

  • Manalo KD, Linsangan NB, Torres JL (2013) Classification of myoelectric signals using multilayer perceptron neural network with back propagation algorithm in a wireless surface myoelectric prosthesis. Int J Inf Educ Technol 6(9):686–690. https://doi.org/10.7763/IJIET.2016.V6.774

    Article  Google Scholar 

  • Meshram SG, Powar PL, Singh VP (2017) Modelling soil erosion from a watershed using cubic splines. Arab J Geosci 10:155. https://doi.org/10.1007/s12517-017-2908-1

    Article  Google Scholar 

  • Meshram SG, Ghorbani MA, Shamshirband S et al (2019a) River flow prediction using hybrid PSOGSA algorithm based on feed-forward neural network. Soft Comput 23:10429–10438. https://doi.org/10.1007/s00500-018-3598-7

    Article  Google Scholar 

  • Meshram SG, Ghorbani MA, Deo RC et al (2019b) New approach for sediment yield forecasting with a two-phase feed forward neuron network-particle swarm optimization model integrated with the gravitational search algorithm. Water Resour Manage 33:2335–2356. https://doi.org/10.1007/s11269-019-02265-0

    Article  Google Scholar 

  • Meshram SG, Pourghasemi HR, Abba SI, Alvandi E, Meshram C, Khedher KM (2021a) A comparative study between dynamic and soft computing models for sediment forecasting. Soft Comput 25:11005–11017. https://doi.org/10.1007/s00500-021-05834-x.

  • Meshram SG, Safari MJS, Khosravi K, Meshram C (2021b) Iterative classifier optimizer-based pace regression and random forest hybrid models for suspended sediment load prediction. Environ Sci Pollut Res 28(1):11637–11649. https://doi.org/10.1007/s11356-020-11335-5

  • Meshram SG, Meshram C, Pourhosseini FA, Hasan MA, Islam S (2022a) A multi-layer perceptron (MLP)-fire fly algorithm (FFA) Based model for sediment prediction. Soft Comput. https://doi.org/10.1007/s00500-021-06281-4

    Article  Google Scholar 

  • Meshram SG, Singh VP, Kahya E et al (2022b) Assessing erosion prone areas in a watershed using interval rough-analytical hierarchy process (IR-AHP) and fuzzy logic (FL). Stoch Environ Res Risk Assess 36:297–312. https://doi.org/10.1007/s00477-021-02134-6

  • Meshram SG, Tirivarombo S, Meshram C et al (2022c) Prioritization of soil erosion-prone sub-watersheds using fuzzy-based multi-criteria decision-making methods in Narmada basin watershed, India. Int J Environ Sci Technol 20:1741–1752. https://doi.org/10.1007/s13762-022-04044-8

  • Meshram SG, Meshram C, Hasan MA, Khan MA, Islam S (2022d) Morphometric deterministic model for prediction of sediment yield index for selected watersheds in Upper Narmada Basin. Appl Water Sci 12:153. https://doi.org/10.1007/s13201-022-01644-0

  • Misra D, Oommen T, Agarwal A, Mishra SK, Thompson AM (2009) Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst Engg 103:527–535

    Google Scholar 

  • Moazenzadeh R, Mohammadi B, Shamshirband S, Chau KW (2018) Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng Appl Comput Fluid Mech 12(1):584–597. https://doi.org/10.1080/19942060.2018.1482476

  • Mohammadi M, Gheibi M, Fathollahi-Fard AM, Eftekhari M, Kian Z, Tian G (2021) A hybrid computational intelligence approach for bioremediation of amoxicillin based on fungus activities from soil resources and aflatoxin B1 controls. J Env Manage 299:113594. https://doi.org/10.1016/j.jenvman.2021.113594

  • Nash JE, Sutcliffe JV (1970) River Flow forecasting through conceptual model. Part 1—a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nasseri M, Asghari K, Abedini MJ (2008) Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Exp Syst Appl 35(3):1415–1421

    Google Scholar 

  • Nazzareno D, Sergio G (2009) An improved correlation model for sediment delivery ratio assessment. Environ Earth Sci 59(1):223–231

    Google Scholar 

  • Nourani V, Mogaddam AA, Nadiri AO (2008) An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Proces 22(26):5054–5066

    Google Scholar 

  • Olatomiwa L, Mekhilef S, Shamshirband S, Petković D (2015) Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renewable Sustain Energy Rev 51:1784–1791. https://doi.org/10.1016/j.rser.2015.05.068

  • Okkan U, Serbes ZA (2012) Rainfall–runoff modeling using least squares support vector machines. Environment 23:549–564

    MathSciNet  Google Scholar 

  • Pal M, Deswal S (2009) M5 model tree based modelling of reference evapotranspiration. Hydrol Process 23(10):1437–1443. https://doi.org/10.1002/hyp.7266

    Article  Google Scholar 

  • Palani S, Liong SY, Tkalich P (2008) An ANN application for water quality forecasting. Mar Pollu Bull 56:1586–1597

    Google Scholar 

  • Park J, Sanberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 2:246–257

    Google Scholar 

  • Patel DP, Srivastava PK, Gajjar CA (2012) Prioritization of Malesari mini-watersheds through morphometric analysis: a remote sensing and GIS perspective. Environ Earth Sci 69(8):2643–2656

    Google Scholar 

  • Plahl C, Kozielski M, Scluter R, Ney H (2013) Feature combinations and stacking of recurrent and non-recurrent neural networks for LVCSR. IEEE International conference on acoustics, speech and signal processing, p 6714–8

  • Quinlan JR (1992) Learning with continuous classes. In: Proceedings of Australian joint conference on artificial intelligence, Hobart 16-18 November 1992, pp 343–348

  • Rana MA, Goliatt L, Kisi O, Trajkovic S, Shahid S (2022a) Covariance matrix adaptation evolution strategy for improving machine learning approaches in streamflow prediction. Mathematics 10:2971. https://doi.org/10.3390/math10162971

    Article  Google Scholar 

  • Rana MA, Ewees AA, Parmar KS, Yaseen ZM, Shahid S, Kisi O (2022b) The viability of extended marine predator’s algorithm-based artificial neural networks for streamflow prediction. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.109739

    Article  Google Scholar 

  • Rana MA, Dai HL, Ewees AA, Shiri J, Kisi O, Kermani MZ (2022c) Application of improved version of multi verse optimizer algorithm for modelling solar radiation. Energy Rep 8:12063–12080

    Google Scholar 

  • Rana MA, Dai HL, Chargari MM, Al-Bahrani M, Mamlooki M (2022d) Prediction of the FRP reinforced concrete beam shear capacity by using ELM-CRFOA. Measurement 205:112230

    Google Scholar 

  • Rao HSS, Mahabaleswara H (1990) Prediction of the rate of sedimentation of tungabhadra reservoir. Proc Sym Erosion, Sedimentaion and Resource Conservation, Dehradun, India 1:12–20

    Google Scholar 

  • Rao D, Rao KHV, Dadhwal VK (2014) Improvement to the thornthwaite method to study the runoff at a basin scale using temporal remote sensing data. Water Resour Manage 28:1567–1578. https://doi.org/10.1007/s11269-014-0564-8

    Article  Google Scholar 

  • Safari MJS, Meshram SG, Khosravi K et al (2022) Suspended Sediment modeling using sequential minimal optimization regression and isotonic regression algorithms integrated with an iterative classifier optimizer. Pure Appl Geophys 179:3751–3765. https://doi.org/10.1007/s00024-022-03131-8

  • Sarma S, Saikia T (2012) Prioritization of sub watersheds in Khanapara-Bornihat area of Assam-Meghalaya (India) based on land use and slope analysis using remote sensing and GIS. J Indian Soc Remote Sens 40(3):435–446

    Google Scholar 

  • Shi X, He Q, Luo X, Bai Y, Shang M (2022) Large-Scale and scalable latent factor analysis via distributed alternative stochastic gradient descent for recommender systems. IEEE Trans Big Data 8(2):420–431

    Google Scholar 

  • Shiri J, Kisi O, Yoon H, Lee KK, Nazemi AH (2013) Predicting groundwater level fluctuations with meteorological effect implications—a comparative study among soft computing techniques. Compt Geosci 56:32–44

    Google Scholar 

  • Shu C, Ouarda TBMJ (2007) Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour Res 43(7):1–12

    Google Scholar 

  • Solomatine DP, Xue Y (2004) M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China. J Hydrauli Eng 6:491–501. https://doi.org/10.1061/(asce)1084-0699(2004)9:6(491)

    Article  Google Scholar 

  • Suresh M, Sudhakar S, Tiwari KN, Chowdary VM (2004) Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. J Indian Soc Remote Sens 32(3):249–259

    Google Scholar 

  • Tfwala SS, Wang YM, Lin YC (2013) Prediction of missing flow records using multilayer perceptron and coactive neuro fuzzy inference system. Sci World J 2012:584516

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation planning. U. S. Dep. Agri., USDA handbook, No. 537, Washington D C.

  • Wu D, He Y, Luo X, Zhou MC (2022a) A latent factor analysis-based approach to online sparse streaming feature selection. IEEE Trans Syst Man Cybern Syst 52(11):6744–6758

    Google Scholar 

  • Wu D, Shang MS, Luo X, Wang Z (2022b) An L1-and-L2-norm-oriented latent factor model for recommender systems. IEEE Trans Neural Netw Learn Syst 33(10):5775–5788

    MathSciNet  Google Scholar 

  • Wu D, Luo X, Zhou M (2022c) Advancing non-negative latent factorization of tensors with diversified regularization schemes. IEEE Trans Serv Comput 15(3):1334–1344

    Google Scholar 

  • Yadav B, Sudheer C, Mathur S, Adamowski J (2017) Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction. J Water Land Develop. https://doi.org/10.1515/jwld-2017-0012

    Article  Google Scholar 

  • Yoon H, Jun SC, Hyun Y (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138

    Google Scholar 

  • Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. IEEE Trans Ind Electron 58:5438–5450

    Google Scholar 

  • Zhan C, Gan A, Hadi M (2011) Prediction of lane clearance time of freeway incidents using the M5P tree algorithm. IEEE Trans Intell Transp Syst 12:1549–1557

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Kingdom of Saudi Arabia for funding this work through Large Groups RGP.2/209/44.

Funding

Deanship King Khalid University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Gajbhiye Meshram.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, S.G., Hasan, M.A., Nouraki, A. et al. Machine learning prediction of sediment yield index. Soft Comput 27, 16111–16124 (2023). https://doi.org/10.1007/s00500-023-07985-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-07985-5

Keywords

Navigation