Skip to main content
Log in

Sensitivity analysis on Gaussian quantum-behaved particle swarm optimization control parameters

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that falls under the category of nature-inspired algorithms and is similar to evolutionary computing in various ways. Rather than the survival of the fittest, the PSO is driven by a representation of a social psychological model inspired by the group behaviors of birds and other social species. The particle's position is modified in PSO based on its position as well as velocity, while in quantum mechanics, the trajectory idea is absurd; however, the uncertainty principle suggests that a particle's position, as well as velocity, cannot be determined simultaneously. As a result, an advanced version of the quantum mechanics-based PSO method is proposed. The study in this paper is focused on an investigation of a new quantum-behaved PSO (QPSO) method called Gaussian quantum-behaved particle swarm optimization (GQPSO), which uses a mutation operator with a Gaussian distribution and is inspired by classical PSO methods and quantum mechanics concepts. In GQPSO, inadequate control parameter tuning results in poor solutions. To better understand the effect of different control parameters and their implications on GQPSO results, this paper used a full parametric sensitivity analysis on five different problems (the Design of a pressure vessel, Tension/Spring Compression, Rastrigin function, Ackley function, and Constrained Box Volume Problem). By adjusting each parameter one at a time, different optimization problems were used to investigate GQPSO. As a result, to allow particles to change their earliest best solution based on viability, a constraint-handling mechanism was developed. The optimal parameter set for GQPSO is provided based on the analysis of the results. With the help of the proposed optimal parameter set (contraction–expansion coefficient values as (1 = 1.6,2 = 1.3), swarm size as ‘350’, and number of Iterations as ‘500’), GQPSO returned an optimized solution for Rastrigin and Ackley functions. It also performed better in the case of the design of a pressure vessel and tension/spring compression problems in comparison to the existing solution available in related literature. As per the findings of the sensitivity analysis, GQPSO is the most sensitive to the contraction-expansion coefficient in comparison to the maximum number of iterations (itermax) and swarm size (‘n’).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Khatter.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of manuscript.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rugveth, V.S., Khatter, K. Sensitivity analysis on Gaussian quantum-behaved particle swarm optimization control parameters. Soft Comput 27, 8759–8774 (2023). https://doi.org/10.1007/s00500-023-08011-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08011-4

Keywords

Navigation