Skip to main content
Log in

Early diagnosis of diabetic retinopathy using unsupervised learning

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The main cause of eye disorders and visual loss in diabetics is diabetic retinopathy (DR). Patients with diabetes frequently have DR as a result of damage to retinal blood vessels. Therefore, the detachment of the retinal blood vessels is essential to the diagnosis of DR. If the diagnosis is made in the early stages, we can avoid vision loss or blindness issues. A 50% reduction in the probability of vision loss would result from an early diagnosis and initial investigation. Basic preprocessing, segmentation of blood arteries utilizing primary curvatures (maximum) and the ISODATA algorithm with the aid of image processing techniques, and labeling of related components make up the suggested method in this study. This study made use of the DRIVE (digital retinal images for vessel extraction) and STARE (structured analysis of the retina) datasets. Performance metrics including accuracy, specificity, and sensitivity were chosen in order to show the effectiveness of the methodology. The segmentation of blood arteries using the proposed framework in this study achieves higher accuracy than the previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Abdulhay E, Elamaran V, Chandrasekar M, Balaji VS, Narasimhan K (2020) Automated diagnosis of epilepsy from EEG signals using ensemble learning approach. Pattern Recogn Lett 139:174–181

    Google Scholar 

  • Abirami A, Kavitha R (2022) An efficient early detection of diabetic retinopathy using dwarf mongoose optimization based deep belief network. Concurr Comput Pract Exp 34(28):e7364

    Google Scholar 

  • Almotiri J, Elleithy K, Elleithy A (2018) Retinal vessels segmentation techniques and algorithms: a survey. Appl Sci 8(2):1–31

    Google Scholar 

  • Al-Rawi M, Qutaishat M, Arrar M (2007) An improved matched filter for blood vessel detection of digital retinal images. Comput Biol Med 37(2):262–267

    Google Scholar 

  • Aslani S, Sarnel H (2016) A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Process Control 30:1–12

    Google Scholar 

  • Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable COSFIRE filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57

    Google Scholar 

  • Budai A, Bock R, Maier A, Hornegger J, Michelson G (2013) Robust vessel segmentation in fundus images. Int J Biomed Imaging 2013(154860):1–11

    Google Scholar 

  • Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (2010) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 29(7):1369–1381

    Google Scholar 

  • El-Zaart A (2010) Images thresholding using ISODATA technique with gamma distribution. Pattern Recognit Image Anal 20:29–41

    Google Scholar 

  • Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, Owen CG (2012a) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 108(2):600–616

    Google Scholar 

  • Fraz MM, Basit A, Barman SA (2012b) Application of morphological bit planes in retinal blood vessel extraction. J Digit Imaging 26(2):274–286

    Google Scholar 

  • Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012c) Blood vessel segmentation methodologies in retinal images—a survey. Comput Methods Programs Biomed 108(1):407–433

    Google Scholar 

  • Fu H, Xu Y, Lin S, Wong DWK, Liu J (2016) Deep vessel: retinal vessel segmentation via deep learning and conditional random field. In: Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI 2016), pp 132–139

  • Gang L, Chutatape O, Krishnan SM (2002) Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Trans Biomed Eng 49(2):168–172

    Google Scholar 

  • Goldbaum MDM (1975) STARE dataset website. Clemson University, Clemson

    Google Scholar 

  • Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Google Scholar 

  • Islam SM (2020) Semantic segmentation of retinal blood vessel via multi-scale convolutional neural network. In: Proceedings of the international joint conference on computational intelligence (IJCCI 2019), pp 231–241

  • Jiang X, Mojon D (2003) Adaptive local thresholding by verification based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137

    Google Scholar 

  • Kanski JJ (2007) Clinical ophthalmology: a systematic approach. Elsevier Health Sciences, London

    Google Scholar 

  • Kanski JJ, Bowling B (2011) Clinical ophthalmology: a systematic approach, 7th edn. Elsevier Health Sciences

    Google Scholar 

  • Kumar NCS, Radhika Y (2019) Optimized maximum principal curvatures based segmentation of blood vessels from retinal images. Biomed Res 30(2):308–318

    Google Scholar 

  • Kumar KS, Singh NP (2023) Analysis of retinal blood vessel segmentation techniques: a systematic survey. Multimed Tools Appl 82:7679–7733

    Google Scholar 

  • Kwon YH, Fingert JH, Kuehn MH, Alward WL (2009) Primary open-angle glaucoma. N Engl J Med 360:1113–1124

    Google Scholar 

  • Lam BS, Gao Y, Liew AW-C (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381

    Google Scholar 

  • Lez RCG, Woods RE (2018) Digital image processing, 4th edn. Pearson

  • Li J, Li R, Han R, Wang S (2022) Self-relabeling for noise-tolerant retina vessel segmentation through label reliability estimation. BMC Med Imaging 22:1–12

    Google Scholar 

  • Lin Y, Zhang H, Hu G (2018) Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access 7:57717–57724

    Google Scholar 

  • Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Google Scholar 

  • Marín D, Aquino A, Gegœndez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158

    Google Scholar 

  • Marin D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158

    Google Scholar 

  • Matsopoulos GK, Asvestas PA, Delibasis KK, Mouravliansky NA, Zeyen TG (2008) Detection of glaucomatous change based on vessel shape analysis. Comput Med Imaging Graph 32(3):183–192

    Google Scholar 

  • McRRitchie IN, Hart PM, Winder JR (2006) Image registration and subtraction for the visualization of change in diabetic retinopathy screening. Comput Med Imaging Graph 30(3):139–145

    Google Scholar 

  • Memari N, Ramli AR, Saripan MIB, Mashoor S, Moghbel M (2019) Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J Med Biol Eng 39:713–731

    Google Scholar 

  • Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Image Process 25(9):1200–1213

    Google Scholar 

  • Miri MS, Mahloojifar A (2010) Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans Biomed Eng 58(5):1183–1192

    Google Scholar 

  • Moccia S, Momi ED, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms -Review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed 158:71–91

    Google Scholar 

  • Narasimhan K, Elamaran V (2016) Wavelet-based energy features for diagnosis of melanoma from dermoscopic images. Int J Biomed Eng Technol 20(3):243–252

    Google Scholar 

  • Owen CG, Rudnicka AR, Nightingale CM, Mullen R, Barman SA, Sattar N, Cook DG, Whincup PH (2011) Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the child heart and health study in England (CHASE). Arterioscler Thromb Vasc Biol 31(8):1933–1938

    Google Scholar 

  • Padmapriya M, Pasupathy S (2022) Supervised learning software model for the diagnosis of diabetic retinopathy. Int J Comput Vis Robot 13(1):116–132

    Google Scholar 

  • Palomera-Perez MA, Martinez-Perez ME, Benitez-Perez H, Ortega-Arjona JL (2010) Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans Inf Technol Biomed 14(2):500–506

    Google Scholar 

  • Ricci E, Perfetti R (2007a) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Google Scholar 

  • Ricci E, Perfetti R (2007b) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Google Scholar 

  • Rodrigues LC, Marengoni M (2017) Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 36:39–49

    Google Scholar 

  • Roychowdhury S, Koozekanani DD, Parhi KK (2014) Blood vessel segmentation of fundus images by major vessel extraction and sub-image classification. IEEE J Biomed Health Inform 19(3):1118–1128

    Google Scholar 

  • Saha TB, Tchiotsop D, Tchinda R, Kenné G (2015) Automated extraction of the intestinal parasite in the microscopic images using active contours and the hough transform. Curr Med Imaging Rev 11(4):233–246

    Google Scholar 

  • Sivaarunagirinathan S, Ajith Bala B, Fairooz S, Sasi G, Upadhyay HN, Elamaran V (2021) Lossy data compression using K-means clustering on retinal images using RStudio. In: Proceedings of the 3rd international conference on advances in computing, communication control and networking (ICAC3N), Greater Noida, India, pp 1772–1776

  • Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Google Scholar 

  • Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004a) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Google Scholar 

  • Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004b) Digital retinal image for vessel extraction (DRIVE) database. Image Sciences Institute, University Medical Center Utrecht, Utrecht

    Google Scholar 

  • Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci 20:70–79

    Google Scholar 

  • Tchinda BS, Tchiotsop D, Noubom M, Louis-Dorr V, Wolf D (2021) Retinal blood vessels segmentation using classical edge detection filters and the neural network. Inform Med Unlocked 23:1–8

    Google Scholar 

  • Thangaraj S, Periyasamy V, Balaji R (2018) Retinal vessel segmentation using neural network. IET Image Proc 12(5):669–678

    Google Scholar 

  • Verma K, Deep P, Ramakrishnan AG (2011) Detection and classification of diabetic retinopathy using retinal images. In: Proceedings of the 2011 annual IEEE India conference (INDICON), Hyderabad, India, pp 1–6

  • Xiao Z, Adel M, Bourennane S (2013) Bayesian method with spatial constraint for retinal vessel segmentation. Comput Math Methods Med 2013(401413):1–9

    MathSciNet  MATH  Google Scholar 

  • Xu Y, Zhang H, Li H, Hu G (2007) An improved algorithm for vessel centerline tracking in coronary angiograms. Comput Methods Programs Biomed 88(2):131–143

    Google Scholar 

  • You X, Peng Q, Yuan Y, Cheung Y-M, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44(10–11):2314–2324

    Google Scholar 

  • Yun WL, Acharya UR, Venkatesh YV, Chee C, Min LC, Ng EYK (2008) Identification of different stages of diabetic retinopathy using retinal optical images. Inf Sci 178(1):106–121

    Google Scholar 

  • Zana F, Klein J-C (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019

    MATH  Google Scholar 

  • Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Padmapriya.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmapriya, M., Pasupathy, S. & Punitha, V. Early diagnosis of diabetic retinopathy using unsupervised learning. Soft Comput 27, 9093–9104 (2023). https://doi.org/10.1007/s00500-023-08418-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08418-z

Keywords

Navigation