Skip to main content

Advertisement

Log in

Enhancing the Whale Optimisation Algorithm with sub-population and hybrid techniques for single- and multi-objective optimisation

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The Whale Optimisation Algorithm (WOA) is a meta-heuristic model inspired by the hunting behaviours of humpback whales. Similar to many other meta-heuristic models, e.g., Particle Swarm Optimisation (PSO), Artificial Bee Colony (ABC), and Ant Colony Optimisation (ACO), the WOA is susceptible to the issues of slow convergence and local optima. In this study, we address these short comings by first proposing an Enhanced WOA (EWOA) model for tackling single-objective optimisation. Specifically, EWOA integrates the WOA and Differential Evolution (DE). DE is a population-based algorithm that generates new candidate solutions by combining the existing ones, employing a simple yet robust formula. This amalgamation aids in generating diverse solutions during the exploration stage by utilising a non-linear coefficient vector, adaptive weight, and sub-population strategies. Furthermore, fast non-dominated sorting and crowding distance techniques from the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are incorporated into EWOA, resulting in a multi-objective EWOA (MOEWOA) model. We evaluate both EWOA and MOEWOA with a broad spectrum of benchmark functions. The results from 51 single-objective optimisation problems indicate the usefulness of EWOA in terms of a fast convergence rate and with increased performance. On the other hand, MOEWOA demonstrates a better convergence rate and an effective balance between convergence and diversity in 12 multi-objective optimisation problems. In addition, MOEWOA successfully solves 21 complex multi-objective constrained mechanical design problems, outperforming other compared algorithms at the 95% confidence level. The empirical outcomes of our study indicate the potential of EWOA and MOEWOA for undertaking complex, real-world optimisation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  • Abd Elaziz M, Lu S, He S (2021) A multi-leader whale optimization algorithm for global optimization and image segmentation. Expert Syst Appl 175:114841

    MATH  Google Scholar 

  • Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52

    MATH  Google Scholar 

  • Bentouati B, Chaib L, Chettih S (2016) A hybrid whale algorithm and pattern search technique for optimal power flow problem. In: 2016 8th international conference on modelling, identification and control (icmic), pp 1048–1053

  • Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8(1):10–15

    MATH  Google Scholar 

  • Blank J, Deb K (2020) Pymoo: multi-objective optimization in python. IEEE Access 8:89497–89509

    MATH  Google Scholar 

  • Cai X, Li Y, Fan Z, Zhang Q (2014) An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans Evol Comput 19(4):508–523

    MATH  Google Scholar 

  • Chakraborty S, Saha AK, Chakraborty R, Saha M (2021) An enhanced whale optimization algorithm for large scale optimization problems. Knowl-Based Syst 233:107543

    MATH  Google Scholar 

  • Chakraborty S, Saha AK, Sharma S, Chakraborty R, Debnath S (2023) A hybrid whale optimization algorithm for global optimization. J Ambient Intell Humaniz Comput 14(1):431–467

    MATH  Google Scholar 

  • Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res 33(3):859–871

    MATH  Google Scholar 

  • Coello CAC (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    MATH  Google Scholar 

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    MATH  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization, Evolutionary multiobjective optimization. Springer, New York, pp 105–145

    MATH  Google Scholar 

  • Deb K, Agrawal S (1999) A niched-penalty approach for constraint handling in genetic algorithms, Artificial neural nets and genetic algorithms, pp 235–243

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. Parallel problem solving from nature ppsn vi: 6th international conference Paris, France, September 18–20, 2000 proceedings 6, pp 849–858

  • Dehghani M, Montazeri Z, Trojovská E, Trojovskỳ P (2023) Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl-Based Syst 259:110011

    MATH  Google Scholar 

  • Deng H, Liu L, Fang J, Qu B, Huang Q (2023) A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm. Math Comput Simul 205:794–817

    MathSciNet  MATH  Google Scholar 

  • Desale S, Rasool A, Andhale S, Rane P (2015) Heuristic and meta-heuristic algorithms and their relevance to the real world: a survey. Int J Comput Eng Res Trends 351(5):2349–7084

    Google Scholar 

  • Dewi SK, Utama DM (2021) A new hybrid whale optimization algorithm for green vehicle routing problem. Syst Sci Control Eng 9(1):61–72

    MATH  Google Scholar 

  • Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506

    MathSciNet  MATH  Google Scholar 

  • Eckart Z,Marco L, Lothar T (2001) Improving the strength pareto evolutionary algorithm for multiobjective optimization. EUROGEN, Evol Method Des Optim Control Ind Problem, pp 1–21

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    MATH  Google Scholar 

  • Gomes WJ, Beck AT, Lopez RH, Miguel LF (2018) A probabilistic metric for comparing metaheuristic optimization algorithms. Struct Saf 70:59–70

    MATH  Google Scholar 

  • Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2022) Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110

    MathSciNet  MATH  Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    ADS  MATH  Google Scholar 

  • Hussain N, Khan MA, Kadry S, Tariq U, Mostafa RR, Choi J-I, Nam Y (2021) Intelligent deep learning and improved whale optimization algorithm based framework for object recognition. Hum Cent Comput Inf Sci 11(34):2021

  • Inthachot M, Supratid S (2007) A multi-subpopulation particle swarm optimization: a hybrid intelligent computing for function optimization. In: Third international conference on natural computation (icnc 2007) (vol 5, pp 679–684)

  • Jadhav AN, Gomathi N (2018) Wgc: hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex Eng J 57(3):1569–1584

    MATH  Google Scholar 

  • Jain H, Deb K (2013) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622

    MATH  Google Scholar 

  • Jianhao W, Long W, Lijie C, Tian G (2021) Enhanced whale optimization algorithm for large-scale global optimization problems. In: 2021 international conference on computer communication and artificial intelligence (ccai), pp 180–187

  • Kaveh A, Rastegar Moghaddam M (2018) A hybrid woa-cbo algorithm for construction site layout planning problem. Scientia Iranica 25(3):1094–1104

    MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of icnn’95-international conference on neural networks, vol 4, pp 1942–1948

  • Korani W, Mouhoub M (2021) Review on nature-inspired algorithms. Oper Res Forum 2:1–26

    MathSciNet  MATH  Google Scholar 

  • Kumar A, Wu G, Ali MZ, Luo Q, Mallipeddi R, Suganthan PN, Das S (2021) A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results. Swarm Evol Comput 67:100961

    MATH  Google Scholar 

  • Lee C-Y, Zhuo G-L (2021) A hybrid whale optimization algorithm for global optimization. Mathematics 9(13):1477

    MATH  Google Scholar 

  • Li Q-H, Li J-Q, Zhang Q-K, Duan P, Meng T (2021) An improved whale optimisation algorithm for distributed assembly flow shop with crane transportation. Int J Autom Control 15(6):710–743

    MATH  Google Scholar 

  • Li M, Xu G-H, Zeng L, Lai Q (2022) Hybrid whale optimization algorithm based on symbiosis strategy for global optimization. Appl Intell 1–43

  • Liang JJ, Qu B, Suganthan PN, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report 201212(34):281–295

  • Lin X, Yu X, Li W (2022) A heuristic whale optimization algorithm with niching strategy for global multi-dimensional engineering optimization. Comput Ind Eng 171:108361

    MATH  Google Scholar 

  • Liu Z-Z, Wang Y (2019) Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces. IEEE Trans Evol Comput 23(5):870–884

    MATH  Google Scholar 

  • Liu J, Yang Z, Li D (2020) A multiple search strategies based grey wolf optimizer for solving multi-objective optimization problems. Expert Syst Appl 145:113134

    MATH  Google Scholar 

  • Liu Z-Z, Wang Y, Huang P-Q (2020) And: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation. Inf Sci 509:400–419

    MathSciNet  MATH  Google Scholar 

  • Liu L, Zhang R (2022) Multistrategy improved whale optimization algorithm and its application. Comput Intell Neurosci 2022

  • Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2021) A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28:1853–1869

    MathSciNet  MATH  Google Scholar 

  • Milenković M, Bojović N, Abramin D (2023) Railway freight wagon fleet size optimization: a real-world application. J Rail Transp Plan Manag 26:100373

    MATH  Google Scholar 

  • Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    MATH  Google Scholar 

  • Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    MATH  Google Scholar 

  • Mirjalili S, Mirjalili S (2019) Ant colony optimisation. Evol Algorithms Neural Netw Theory Appl 33–42

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    MATH  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    MATH  Google Scholar 

  • Mirjalili S, Saremi S, Mirjalili SM, Coelho LdS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    MATH  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    MATH  Google Scholar 

  • Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl-Based Syst 134:50–71

    MATH  Google Scholar 

  • Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95

    MATH  Google Scholar 

  • Mohammadzadeh H, Gharehchopogh FS (2021) A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: case study email spam detection. Comput Intell 37(1):176–209

    MathSciNet  MATH  Google Scholar 

  • Mohammed HM, Umar SU, Rashid TA (2019) A systematic and meta-analysis survey of whale optimization algorithm. Comput Intell Neurosci

  • Mohapatra P, Das KN, Roy S (2017) A modified competitive swarm optimizer for large scale optimization problems. Appl Soft Comput 59:340–362

    MATH  Google Scholar 

  • Molga M, Smutnicki C (2005) Test functions for optimization needs. Test Func Optimiz Needs 101:48

    MATH  Google Scholar 

  • Ning G-Y, Cao D-Q (2021) Improved whale optimization algorithm for solving constrained optimization problems. Discrete Dyn Nat Soc 2021:1–13

    MathSciNet  MATH  Google Scholar 

  • Pham D, Ghanbarzadeh A, Koc E, Otri S , Rahim S, Zaidi M (2005) The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, pp 44–48

  • Pham Q-V, Mirjalili S, Kumar N, Alazab M, Hwang W-J (2020) Whale optimization algorithm with applications to resource allocation in wireless networks. IEEE Trans Veh Technol 69(4):4285–4297

    Google Scholar 

  • Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 ieee congress on evolutionary computation (cec), pp 1–8

  • Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2020) Mosma: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9:3229–3248

    Google Scholar 

  • Premkumar M, Jangir P, Kumar BS, Sowmya R, Alhelou HH, Abualigah L et al (2021) A new arithmetic optimization algorithm for solving real-world multiobjective cec-2021 constrained optimization problems: diversity analysis and validations. IEEE Access 9:84263–84295

    Google Scholar 

  • Price KV (1996) Differential evolution: a fast and simple numerical optimizer. In: Proceedings of north American fuzzy information processing, pp 524–527

  • Qazani MRC, Asadi H, Arogbonlo A, Rahimzadeh G , Mohamed S, Pedrammehr S et al. (2021) Whale optimization algorithm for weight tuning of a model predictive control-based motion cueing algorithm. In: 2021 ieee international conference on systems, man, and cybernetics (smc), pp 1042–1048

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  • Riyahi M, Rafsanjani MK, Gupta BB, Alhalabi W (2022) Multiobjective whale optimization algorithm-based feature selection for intelligent systems. Int J Intell Syst 37(11):9037–9054

    MATH  Google Scholar 

  • Saffari A, Zahiri SH, Khishe M(2022) Fuzzy whale optimisation algorithm: a new hybrid approach for automatic sonar target recognition. J Exp Theor Artif Intell 1–17

  • Salgotra R, Singh U, Saha S, Nagar A (2019) New improved salshade-cnepsin algorithm with adaptive parameters. In: 2019 ieee congress on evolutionary computation (cec), pp 3150–3156

  • Shen Y, Zhang C, Gharehchopogh FS, Mirjalili S (2023) An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems. Expert Syst Appl 215:119269

    MATH  Google Scholar 

  • Sierra MR, Coello CAC (2005) Improving pso-based multi-objective optimization using crowding, mutation and dominance. In: International conference on evolutionary multi-criterion optimization, pp 505–519

  • Sivalingam R, Chinnamuthu S, Dash SS (2017) A modified whale optimization algorithm-based adaptive fuzzy logic pid controller for load frequency control of autonomous power generation systems. Automatika 58(4):410–421

    MATH  Google Scholar 

  • Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 ieee congress on evolutionary computation, pp 71–78

  • Tang C, Sun W, Xue M, Zhang X, Tang H, Wu W (2022) A hybrid whale optimization algorithm with artificial bee colony. Soft Comput 26(5):2075–2097

    MATH  Google Scholar 

  • Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2017) An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput 22(4):609–622

    MATH  Google Scholar 

  • Tian Y, Cheng R, Zhang X, Jin Y (2017) Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87

    MATH  Google Scholar 

  • Tian Y, Zhang T, Xiao J, Zhang X, Jin Y (2020) A coevolutionary framework for constrained multiobjective optimization problems. IEEE Trans Evol Comput 25(1):102–116

    MATH  Google Scholar 

  • Uzer MS, Inan O (2023) Application of improved hybrid whale optimization algorithm to optimization problems. Neural Comput Appl 35(17):12433–12451

    MATH  Google Scholar 

  • Wang R-B, Wang W-F, Xu L, Pan J-S, Chu S-C (2022) Improved dv-hop based on parallel and compact whale optimization algorithm for localization in wireless sensor networks. Wirel Netw 28(8):3411–3428

    MATH  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    MATH  Google Scholar 

  • Xu Z, Yu Y, Yachi H, Ji J, Todo Y, Gao S (2018). A novel memetic whale optimization algorithm for optimization. In: International conference on swarm intelligence, pp 384–396

  • Yab LY, Wahid N, Hamid RA (2022) A meta-analysis survey on the usage of meta-heuristic algorithms for feature selection on high-dimensional datasets. IEEE Access 10:122832–122856

    Google Scholar 

  • Yan Z-P, Deng C, Zhou J-J, Chi D-N (2012) A novel two-subpopulation particle swarm optimization. In: Proceedings of the 10th world congress on intelligent control and automation, pp 4113–4117

  • Yan Z, Zhang J, Zeng J, Tang J (2021) Nature-inspired approach: an enhanced whale optimization algorithm for global optimization. Math Comput Simul 185:17–46

    MathSciNet  MATH  Google Scholar 

  • Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspired Comput 2(2):78–84

    MATH  Google Scholar 

  • Yang W, Xia K, Fan S, Wang L, Li T, Zhang J, Feng Y (2022) A multi-strategy whale optimization algorithm and its application. Eng Appl Artif Intell 108:104558

    MATH  Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    MATH  Google Scholar 

  • Yu D, Hong J, Zhang J, Niu Q (2018) Multi-objective individualized-instruction teaching-learning-based optimization algorithm. Appl Soft Comput 62:288–314

    MATH  Google Scholar 

  • Zhang J, Sanderson AC (2009) Jade: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    MATH  Google Scholar 

  • Zhang X, Wen S (2021) Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems. Expert Syst Appl 179:115032

    MATH  Google Scholar 

  • Zhou Y, Zhu M, Wang J, Zhang Z, Xiang Y, Zhang J (2018) Tri-goal evolution framework for constrained many-objective optimization. IEEE Trans Syst Man Cybern Syst 50(8):3086–3099

  • Zhu Q, Lin Q, Chen W, Wong K-C, Coello CAC, Li J et al (2017) An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern 47(9):2794–2808

    PubMed  MATH  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L(2001) Spea2: improving the strength pareto evolutionary algorithm. TIK-report,103

Download references

Funding

The authors declare that they did not receive any funding, grants, or other financial support for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

The authors confirm that this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Pseudocodes of WOA and MOEWOA

Algorithm 1
figure a

Whale Optimisation Algorithm (WOA)

Algorithm 2
figure b

Multi-objective EWOA

Table 14 Description of uni-modal benchmark functions in Yao et al. (1999); Molga and Smutnicki (2005); Digalakis and Margaritis (2001); Yang (2010)
Table 15 Description of multi-modal benchmark functions in Yao et al. (1999); Molga and Smutnicki (2005); Digalakis and Margaritis (2001); Yang (2010)
Table 16 Description of fixed-dimension multi-modal benchmark functions in Yao et al. (1999); Molga and Smutnicki (2005); Digalakis and Margaritis (2001); Yang (2010)
Table 17 Description of benchmark functions (F1–F28) in CEC 2013

Appendix B: Single-objective benchmark functions

See Tables 14, 15, 16 and 17.

Table 18 Results of benchmarks functions (F1–F23) in Yao et al. (1999); Molga and Smutnicki (2005); Digalakis and Margaritis (2001); Yang (2010) for EWOA vs its competitors in Mirjalili and Lewis (2016)
Table 19 Mean values and ranking of EWOA and several popular algorithms in Wang et al. (2022) for benchmark functions (F1–F28) in CEC 2013 competition

Appendix C: Quantitative results for single-objective functions

See Tables 18, 19,

Appendix D: Quantitative results for multi-objective functions

See Tables 20, 21, 22 and 23

Table 20 Mean values, standard deviation, and ranking of MOEWOA and other well-known algorithms in Liu et al. (2020) in term of \(\gamma \) for all test problems
Table 21 Mean values, standard deviation, and ranking of MOEWOA and other well-known algorithms in Liu et al. (2020) in term of \(\Delta \) for all test problems
Table 22 Mean values, standard deviation, and ranking of MOEWOA and other well-known algorithms in Liu et al. (2020) in term of GD for all test problems
Table 23 Mean values, standard deviation, and ranking of MOEWOA and other well-known algorithms in Liu et al. (2020) in term of IGD for all test problems
Table 24 Description of 21 real-world constrained multi-objective mechanical design problems (RCM01–RCM21) in Kumar et al. (2021)
Table 25 Mean values and ranking of MOEWOA and other well-known algorithms in Kumar et al. (2021); Premkumar et al. (2021) in term of HV for all mechanical design problems in Kumar et al. (2021)

Appendix E: Real-world case study

See Tables 24, 25

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Choo, Y.H., Le, V. et al. Enhancing the Whale Optimisation Algorithm with sub-population and hybrid techniques for single- and multi-objective optimisation. Soft Comput 28, 3941–3971 (2024). https://doi.org/10.1007/s00500-023-09351-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09351-x

Keywords

Navigation