Zusammenfassung
Die Quantenkryptographie ist die erste Anwendung von direkten Quanteneffekten, die heutzutage bereits in diversen Labors zu Produkten weiterentwickelt wird. Der von den Autoren verfolgte Ansatz verwendet quantenmechanische Verschränkung zwischen Photonen. Die deshalb auftretenden, neuartigen Effekte bewirken, dass ein "bedingungslos geheimer Schlüssel" zwischen den Kommunikationspartnern ausgetauscht werden kann. In diesem Artikel wird erstmalig die Verteilung von Polarisationsverschränkung über längere Distanzen in Glasfasern gezeigt. Die auftretenden Korrelationen zeigen solch hohe Güte, wie sie für den Aufbau eines geheimen Schlüssels notwendig ist.
Summary
Quantum cryptography is the first application of a real quantum technology to come on the market. The development is still largely performed in various research laboratories, however, commercialization on a larger scale is expected soon. Our aim is to use entanglement between photons as a quantum resource to form an "unconditional secure key" between communication partners. In this article we present for the first time the distribution of polarization entangled photons over long distances in optical fibers. The correlations are measured with such high quality that they are sufficient to extract a secure key.
Literatur
Aspect, A., Dalibard, J., Roger, G. (1982): Experimental test of Bell's inequalities using time-varying analyzers. Physical Review Letters 49 (25): 1804–1807.
Bell, J. (1964): On the Einstein Podolsky Rosen paradox. Physics 1(3): 195–200.
Bennett, C. H., Brassard, G. (1984): Quantum cryptography: Public key distribution and coin tossing. Proc. of the IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India: 175–179.
Bennett, C. H., Brassard, G. (1989): The dawn of a new era for quantum cryptography: The experimental prototype is working! Sigact News 20 (4): 78–82.
Einstein, A., Podolsky, R., Rosen, N. (1935): Can quantum-mechanical description of physical reality be considered complete? Physical Review 47 (May 1935): 777–780.
Gobby, C., Yuan, Z. L., Shields, A. J. (2004): Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters 84: 3762–3764.
Hughes, R. J., et al. (1996): Quantum cryptography over 14 km of installed optical fiber. Coherence and quantum optics VII. J. H. Eberly et al. (eds). 103, New York, Plenum.
Kurtsiefer, C., et al. (2002): A step towards global key distribution. Nature 419: 450.
Kwiat, P. G., et al. (1995): New high-intensity source of polarization-entangled photon pairs. Physical Review Letters 75 (24): 4337–4342.
Muller, A., Zbinden, H., Gisin, N. (1996): Quantum cryptography over 23 km in installed under-lake telecom fibre. Europhysics Letters 33: 335.
Poppe, A., et al. (2004): Practical quantum key distribution with polarization entangled photons. Optics Express 12 (16): 3865–3871.
Resch, K., et al. (2005): Distributing entanglement and single photons through an intra-city, free-space quantum channel. Optics Express 13 (1): 202–209.
Stucki, D., et al. (2002): Quantum key distribution over 67 km with a plug&play system. New Journal of Physics 4: 41.
Townsend, P. D., Rarity, J. G., Tapster, P. R. (1993): Enhanced single photon fringe visibility in a 10 km-long prototypequantum cryptography channel. Electronic Letter 29: 634.
Ursin, R., et al. (2006): Free-space distribution of entanglement and single photons over 144 km. pre-printserver arXive.org, quant-ph/0607182.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Poppe, A., Hübel, H., Schrenk, B. et al. Der Einsatz verschränkter Photonen für die Quantenkryptographie. Elektrotech. Inftech. 124, 142–148 (2007). https://doi.org/10.1007/s00502-007-0429-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00502-007-0429-4