Zusammenfassung
Gewaltige Fortschritte auf dem Gebiet der Digitaltechnik und der digitalen Übertragungstechnik haben unsere Gesellschaft innerhalb weniger Jahrzehnte in eine Kommunikations- und Informationsgesellschaft transformiert und wesentliche Bereiche des alltäglichen Lebens grundlegend verändert. Das dazu nötige technologische Rückgrat reicht von zellularen Mobilfunknetzen bis hin zu Hochleistungs-Glasfasernetzen. In diesem Übersichtsartikel wird die Rolle der Optik in modernen Telekommunikationsnetzen beleuchtet, und fundamentale und praktische Vor- und Nachteile optischer Technologien werden diskutiert. Es wird gezeigt, dass die Optik nicht nur die mit Abstand beste Technologie zum Transport großer Datenmengen über lange Distanzen ist, sondern auch aus dem leitungsgebundenen Netzzugangsbereich bald nicht mehr wegzudenken sein wird. Andererseits wird auch betont, dass sich Schaltfunktionen in Netzknotenpunkten nur dann effizient optisch realisieren lassen, wenn es um das Durchschalten großer Datenmengen im Sinn leitungsvermittelnder Netztechnologien geht. Paketvermittelnde Netzknoten werden auch in Zukunft vorwiegend auf elektronische und nur sehr beschränkt auf optische Technologien zurückgreifen können. Unsere Betrachtungen werden mit aktuellen Beispielen aus der Forschung auf dem Gebiet der optischen Kommunikationstechnologien untermauert.
Summary
Incredible advances in digital communications and communications engineering over the past few decades have transformed our society into a true communication and information society, affecting many aspects of our everyday lives. The required infrastructure is provided by a diverse portfolio of communication technologies, ranging from cellular mobile voice and data systems all the way to high-capacity fiber-optic networks. In this article, we review the role of optics in modern telecommunication networks and discuss fundamental advantages and shortcomings of photonic networking technologies. We show that optical transmission is not only unrivaled for transporting huge amounts of data over long communication distances, but is also key to modern high-speed access networks (fiber-to-the-home). On the other hand, we argue that optical switching can only be implemented efficiently on a circuit basis, leaving packet routing functionalities predominantly to electronics, aided and supplemented by optical technologies for switch element interconnects and passive optical switch fabrics. We illustrate our discussions by examples from recent research in optical communication technologies.
Literatur
Desurvire, E. (2006): Capacity demand and technology challenges for lightwave systems in the next two decades. Journal of Lightwave Technology 24: 4697.
Färbert, A., Langenbach, S., Stojanovic, N., Dorschky, C., Kupfer, T., Schulien, C., Elbers, J.-P., Wernz, H., Griesser, H., Glingener, C. (2004): Performance of a 10.7-Gb/s receiver with digital equalizer using maximum likelihood sequence estimation. Proc. European Conf. on Optical Communication (ECOC), paper Th 4.1.5.
Furch, B., Sodnik, Z., Lutz, H. (2002): Optical communications in space – a challenge for Europe. International Journal of Electronics and Communication (AEU) 56: 223.
Gnauck, A. H., Charlet, G., Tran, P., Winzer, P. J., Doerr, C. R., Kawanishi, T., Sakamoto, T. (2007): 25.6-Tb/s C + L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals. Proc. Optical Fiber Communication Conf. (OFC), paper PDP19.
Köpf, G. A., Marshalek, R. G., Begley, D. L. (2002): Space laser communications: a review of major programs in the United States. International Journal of Electronics and Communication (AEU) 56: 232.
Lee, C.-H., Sorin, W. V., Kim, B. Y. (2006): Fiber to the home using a PON infrastructure. Journal of Lightwave Technology 24: 4568.
McGhan, D., Laperle, C., Savchenko, A., Li, C., Mak, G., O'Sullivan, M. (2005): 5120 km RZ-DPSK transmission over G.652 fiber at 10 Gb/s with no optical dispersion compensation. Proc. Optical Fiber Communication Conf. (OFC), paper PDP27.
Mizuochi, T. (2006): Recent progress in forward error correction and its interplay with transmission impairments. Journal of Selective Topics on Quantum Electron. 12: 544.
Neilson, D. T. (2006): Photonics for switching and routing. Journal of Selective Topics on Quantum Electron. 12: 669.
Pfau, T., Hoffmann, S., Peveling, R., Bhandare, S., Adamczyk, O., Porrmann, M., Noé, R., Achiam, Y. (2006): 1.6 Gbit/s real-time synchronous QPSK transmission with standard DFB lasers. Proc. European Conf. on Optical Communication (ECOC), paper Mo 4.2.6.
Schares, L., et al. (2006): Terabus: Terabit/second-class card-level optical interconnect technologies. Journal of Selective Topics on Quantum Electron. 12: 1032.
Shannon, C. E. (1948): A mathematical theory of communication. Bell System Technical Journal 27: 623.
Szajowski, P. F., Nykolak, G., Auborn, J. J., Presby, H. M., Tourgee, G. E., Romain, D. (2000): Key elements of high-speed WDM terrestrial free-space optical communication systems. In: Mecherle, G. S.(ed.) Free Space Laser Communication Technologies XII. Proc. SPIE: 3932.
Tucker, R. S. (2006): The role of optics and electronics in high-capacity routers. J. Lightwave Technol. 24: 4655.
Winzer, P. J., Essiambre, R.-J. (2006): Advanced optical modulation formats. Proc. IEEE 94: 952.
Winzer, P. J., Raybon, G., Chandrasekhar, S., Doerr, C. R., Kawanishi, T., Sakamoto, T., Higuma, K. (2007): 10 × 107-Gb/s NRZ-DQPSK transmission at 1.0 b/s/Hz over 12×100 km including 6 optical routing nodes. Proc. Optical Fiber Communication Conf. (OFC), paper PDP24.
Winzer, P. J., Raybon, G., Doerr, C. R. (2006): 10×107 Gb/s electronically multiplexed NRZ transmission at 0.7 bits/s/Hz over 1000 km non-zero dispersion fiber. Proc. European Conf. on Optical Communication (ECOC), paper Tu 1.5.1.
Wu, M. C., Solgaard, O., Ford, J. E. (2006): Optical MEMS for lightwave communication. Journal of Lightwave Technology 24: 4433.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Winzer, P. Die Rolle der Optik in Telekommunikationsnetzen. Elektrotech. Inftech. 124, 169–174 (2007). https://doi.org/10.1007/s00502-007-0438-3
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00502-007-0438-3