Skip to main content
Log in

Bayesian inference for inverse problems – statistical inversion

Bayes'sche Inferenz für inverse Probleme – statistische Inversion

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

Unlike deterministic inversion methods, statistical approaches are capable of taking into account inherent measurement and model uncertainties into the inverse problem solution in a very simple and natural way. Statistical inversion theory reformulates inverse problems as problems of Bayesian statistical inference. In this framework, the solution to an inverse problem is the probability distribution of the quantity of interest, i.e. the unknown parameters. This paper discusses the robust solution of inverse problems from the perspective of statistical inversion theory and reviews two different approaches for stationary and non-stationary electrical capacitance tomography.

Zusammenfassung

Im Gegensatz zu deterministischen Verfahren erlauben statistische Ansätze die Berücksichtigung von Messunsicherheiten und Systemvariabilitäten in einfacher und sinnvoller Weise. Im Zuge der statistischen Inversion werden inverse Probleme als Bayes'sche Inferenzprobleme formuliert. Die Lösung des inversen Problems entspricht einer Wahrscheinlichkeitsverteilung der zu ermittelnden Systemgrössen, d. h. der unbekannten Parameter. In diesem Beitrag wird die robuste Lösung von inversen Problemen aus dem Blickwinkel der statistischen Inversion diskutiert. Darüber hinaus werden zwei verschiedene Ansätze für statische und dynamische Kapazitätstomografle untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, K. E., Brooks, S. P., Hansen, M. B. (2003): Bayesian inversion of geoelectrical resistivity data. J. Roy. Stat. Soc: Series B. 65(3): 619–642.

    Article  MATH  MathSciNet  Google Scholar 

  • Aykroyd, R. G., Zimeras, S. (1999): Inhomogeneous prior models for image reconstruction. J. Am. Stat. Assoc. 94(447): 934–946.

    Article  MATH  MathSciNet  Google Scholar 

  • Brandstatter, B., Holler, G., Watzenig, D. (2003): Reconstruction of inhomogeneities in fluids by means of capacitance tomography. Int. J. Comput. Math. Electrical Electron Eng. (COMPEL). 22(3): 508–519.

    Article  Google Scholar 

  • Christen, J. A., Fox, C. (2005): MCMC using an approximation. J. Comput. Graph. Stat. 14: 795–810.

    Article  MathSciNet  Google Scholar 

  • Doucet, A., de Freitas, N., Gordon, N. J. (2001): Sequential Monte Carlo Methods in Practice. New York: Springer.

    MATH  Google Scholar 

  • Geman, S., Geman, D. (1984): Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans, on Pattern Analysis and Machine Intelligence 6: 721–741.

    Article  MATH  Google Scholar 

  • Green, P. J. (1995): Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. J. Biometrika 82(4): 711–732.

    Article  MATH  Google Scholar 

  • Hastings, W. K. (1970): Monte Carlo sampling methods using Markov chains and their applications. J. Biometrika 57(1): 97–109.

    Article  MATH  Google Scholar 

  • Higdon, D. M., Bowsher, J. E., Johnson, V. E., Turkington, T. G., Gilland, D. R., Jaszczak, R. J. (1997): Fully Bayesian estimation of Gibbs hyper-parameters for emission computed tomography data. IEEE Transactions on Medical Imaging. 16(5): 516–526.

    Article  Google Scholar 

  • Kaipio, J., Somersalo, E. (2004): Statistical and Computational Inverse Problems. Number 160 in Applied Mathematics. New York: Springer.

    Google Scholar 

  • Kolehmainen, V. (2001): Novel approaches to image reconstruction in diffusion tomography. PhD thesis, Kuopio University Publications C. Natural and Environmental Sciences 125.

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E. (1953): Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1081–1092.

    Article  Google Scholar 

  • Nicholls, G. K., Fox, C. (1998): Prior modelling and posterior sampling in impedance imaging. Proc. of Bayesian Inference for Inverse Problems. Mohammad-Djafari A. (ed.). 3459: 116–127.

  • Noumeir, R., Mailloux, G. E., Lemieux, R. (1995): An expectation maximization reconstruction algorithm for emission tomography with non-uniform entropy prior. Int. J. Biomed. Comput. 39: 299–310.

    Article  Google Scholar 

  • Soleimani, M., Lionheart, W. R. B. (2005): Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Measurement Science and Technology. 16: 1987–1996.

    Article  Google Scholar 

  • Steiner, G. (2006): Sequential fusion of ultrasound and electrical capacitance tomography. Int. J. Inf. Syst. Sci. 2(4): 484–497.

    MATH  MathSciNet  Google Scholar 

  • Vauhkonen, M., Karjalainen, P. A., Kaipio, J. P. (1998): A Kalman filter approach to track fast impedance changes in electrical impedance tomography. IEEE Transactions on Biomedical Engineering. 45(4): 486–493.

    Article  Google Scholar 

  • Watzenig, D. (2006a): Bayesian inference for process tomography from measured electrical capacitance data. Dissertation. Graz University of Technology.

  • Watzenig, D. (2006b): Recovery of inclusion shape by statistical inversion of non-stationary tomographic measurement data. Information and Systems Sciences 2(4): 469–483.

    MATH  MathSciNet  Google Scholar 

  • Watzenig, D., Brandner, M., Steiner, G. (2007): A particle filter approach for tomographic imaging based on different state-space representations. Measurement Science and Technology 18(1): 30–40.

    Article  Google Scholar 

  • Watzenig, D., Brandner, M., Steiner, G., Wegleiter, H. (2006): A Bayesian filtering approach to object tracking and shape recovery from tomographic measurement data. Proc. of the IEEE Int. Symposium on Industrial Electronics (ISIE'06). Montreal, Canada.

  • Watzenig, D., Steiner, G., Proll, C. (2005): Statistical estimation of phase boundaries and material parameters in industrial process tomography. Proc. of the IEEE Int. Conf. on Industrial Technology (ICIT'05). Hongkong, China: 720–725.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watzenig, D. Bayesian inference for inverse problems – statistical inversion. Elektrotech. Inftech. 124, 240–247 (2007). https://doi.org/10.1007/s00502-007-0449-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-007-0449-0

Keywords

Schlüsselwörter

Navigation