Summary
Unlike deterministic inversion methods, statistical approaches are capable of taking into account inherent measurement and model uncertainties into the inverse problem solution in a very simple and natural way. Statistical inversion theory reformulates inverse problems as problems of Bayesian statistical inference. In this framework, the solution to an inverse problem is the probability distribution of the quantity of interest, i.e. the unknown parameters. This paper discusses the robust solution of inverse problems from the perspective of statistical inversion theory and reviews two different approaches for stationary and non-stationary electrical capacitance tomography.
Zusammenfassung
Im Gegensatz zu deterministischen Verfahren erlauben statistische Ansätze die Berücksichtigung von Messunsicherheiten und Systemvariabilitäten in einfacher und sinnvoller Weise. Im Zuge der statistischen Inversion werden inverse Probleme als Bayes'sche Inferenzprobleme formuliert. Die Lösung des inversen Problems entspricht einer Wahrscheinlichkeitsverteilung der zu ermittelnden Systemgrössen, d. h. der unbekannten Parameter. In diesem Beitrag wird die robuste Lösung von inversen Problemen aus dem Blickwinkel der statistischen Inversion diskutiert. Darüber hinaus werden zwei verschiedene Ansätze für statische und dynamische Kapazitätstomografle untersucht.
Similar content being viewed by others
References
Andersen, K. E., Brooks, S. P., Hansen, M. B. (2003): Bayesian inversion of geoelectrical resistivity data. J. Roy. Stat. Soc: Series B. 65(3): 619–642.
Aykroyd, R. G., Zimeras, S. (1999): Inhomogeneous prior models for image reconstruction. J. Am. Stat. Assoc. 94(447): 934–946.
Brandstatter, B., Holler, G., Watzenig, D. (2003): Reconstruction of inhomogeneities in fluids by means of capacitance tomography. Int. J. Comput. Math. Electrical Electron Eng. (COMPEL). 22(3): 508–519.
Christen, J. A., Fox, C. (2005): MCMC using an approximation. J. Comput. Graph. Stat. 14: 795–810.
Doucet, A., de Freitas, N., Gordon, N. J. (2001): Sequential Monte Carlo Methods in Practice. New York: Springer.
Geman, S., Geman, D. (1984): Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans, on Pattern Analysis and Machine Intelligence 6: 721–741.
Green, P. J. (1995): Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. J. Biometrika 82(4): 711–732.
Hastings, W. K. (1970): Monte Carlo sampling methods using Markov chains and their applications. J. Biometrika 57(1): 97–109.
Higdon, D. M., Bowsher, J. E., Johnson, V. E., Turkington, T. G., Gilland, D. R., Jaszczak, R. J. (1997): Fully Bayesian estimation of Gibbs hyper-parameters for emission computed tomography data. IEEE Transactions on Medical Imaging. 16(5): 516–526.
Kaipio, J., Somersalo, E. (2004): Statistical and Computational Inverse Problems. Number 160 in Applied Mathematics. New York: Springer.
Kolehmainen, V. (2001): Novel approaches to image reconstruction in diffusion tomography. PhD thesis, Kuopio University Publications C. Natural and Environmental Sciences 125.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E. (1953): Equation of state calculations by fast computing machines. J. Chem. Phys. 21: 1081–1092.
Nicholls, G. K., Fox, C. (1998): Prior modelling and posterior sampling in impedance imaging. Proc. of Bayesian Inference for Inverse Problems. Mohammad-Djafari A. (ed.). 3459: 116–127.
Noumeir, R., Mailloux, G. E., Lemieux, R. (1995): An expectation maximization reconstruction algorithm for emission tomography with non-uniform entropy prior. Int. J. Biomed. Comput. 39: 299–310.
Soleimani, M., Lionheart, W. R. B. (2005): Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Measurement Science and Technology. 16: 1987–1996.
Steiner, G. (2006): Sequential fusion of ultrasound and electrical capacitance tomography. Int. J. Inf. Syst. Sci. 2(4): 484–497.
Vauhkonen, M., Karjalainen, P. A., Kaipio, J. P. (1998): A Kalman filter approach to track fast impedance changes in electrical impedance tomography. IEEE Transactions on Biomedical Engineering. 45(4): 486–493.
Watzenig, D. (2006a): Bayesian inference for process tomography from measured electrical capacitance data. Dissertation. Graz University of Technology.
Watzenig, D. (2006b): Recovery of inclusion shape by statistical inversion of non-stationary tomographic measurement data. Information and Systems Sciences 2(4): 469–483.
Watzenig, D., Brandner, M., Steiner, G. (2007): A particle filter approach for tomographic imaging based on different state-space representations. Measurement Science and Technology 18(1): 30–40.
Watzenig, D., Brandner, M., Steiner, G., Wegleiter, H. (2006): A Bayesian filtering approach to object tracking and shape recovery from tomographic measurement data. Proc. of the IEEE Int. Symposium on Industrial Electronics (ISIE'06). Montreal, Canada.
Watzenig, D., Steiner, G., Proll, C. (2005): Statistical estimation of phase boundaries and material parameters in industrial process tomography. Proc. of the IEEE Int. Conf. on Industrial Technology (ICIT'05). Hongkong, China: 720–725.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Watzenig, D. Bayesian inference for inverse problems – statistical inversion. Elektrotech. Inftech. 124, 240–247 (2007). https://doi.org/10.1007/s00502-007-0449-0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00502-007-0449-0