Skip to main content
Log in

Zur Emissivität partiell transparenter, dielektrischer Schichten

On the emissivity of partially transparent dielectric layers

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Die genaue Analyse einer neuartigen Methode zur experimentellen Bestimmung der Wärmeleitfähigkeit dünner Schichten aus dielektrischen Materialien hat gezeigt, dass die Wärmeabstrahlung bei solchen Messungen nicht generell vernachlässigt werden darf. Mit einem Finite-Elemente-Modell, das die Abstrahlung durch eine effektive Emissivität der Oberfläche als Anpassungsparameter berücksichtigt, erzielt man hingegen sehr gute Übereinstimmung mit den Messergebnissen. In dieser Arbeit wird nachgewiesen, dass dieser Wert der effektiven Emissivität mit den Absorptionsdaten der dielektrischen Schicht im Einklang steht. Auf der Grundlage der präsentierten Berechnungsmethode ist die Abschätzung der Emissivität von flächenhaften Dünnschicht-Bauelementen möglich. Umgekehrt ist aufgrund der bestätigten Modellvorstellungen die Entwicklung neuer experimenteller Methoden zur Bestimmung der effektiven Emissivität als auch der Wärmeleitfähigkeit möglich.

Summary

The examination of a new experimental method for the determination of the thermal conductivity of thin dielectric layers revealed that thermal radiation may interfere with such measurements. Using an effective emissivity parameter to account for radiative heat loss, an excellent agreement between measurement and related finite element models is achieved. This paper deals with the successful attempt to confirm the mentioned model based on calculations of the emissivity of thin, partially transparent film from infrared absorption data. A reasonable agreement of the emissivity estimates obtained by the different approaches is achieved. Hence, the emissivity of new designs of thin-film devices may be calculated in advance based on infrared absorption data. Futhermore, the presented calculations enable the development of appropriate devices for the determination of the effective emissivity and the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Beigelbeck, R., Kohl, F., Keplinger, F., Kuntner, J., Jakoby, B. (2007): A novel characterization method for thermal thin-film properties applied to PECVD silicon nitride. Proc. of the 6th IEEE Conf. on Sensors: 938–941

  • De Sousa Meneses, D., Gruener, G., Malki, M., Echegut, P. (2005): Causal voigt profile for modeling reflective spectra of glasses. J Non-Cryst Solids, 351: 124–129

    Article  Google Scholar 

  • De Sousa Meneses, D., Malki, M., Echegut, P. (2006): Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy. J Non-Cryst Solids, 352: 769–776

    Article  Google Scholar 

  • Eriksson, P., Andersson, J. Y., Stemme, G. (1997): Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors. J Microelectromech Syst 6: 55–61

    Article  Google Scholar 

  • Heavens, O. S. (1960): Optical properties of thin films. Rep Prog Phys 23: 1–65

    Article  Google Scholar 

  • Jacquot, A., Liu, W. L., Chen, G., Fleurial, J.-P., Dauscher, A., Lenoir, B. (2002): Improvements of on-membrane method for thin-film thermal conductivity, and emissivity measurements. Proc. 21st Int. Conf. on Thermoelectronics: 353–360

  • Kitamura, R., Pilon, L., Jonasz, M. (2007): Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl Opt, 46 (33): 8118–8133

    Article  Google Scholar 

  • Kohl, F. et al. (2008): Spurious effects interfering with thermal conductivity measurements on thin amorphous dielectric films. Persönliche Mitteilung

  • Kohlrausch, F. (1996): Praktische Physik 1. 24. Aufl. Teubner: 472 ff.

  • Kuntner, J., Jachimowicz, A., Kohl, F., Jakoby, B. (2006): Determining the thin film thermal conductivity of low temperature PECVD silicon nitride. Proc. Eurosensors 2006 (ISBN 91-631-9281-0): W1B-P21

  • Lonke, A., Ron, A. (1967): Infrared Reflection from Metals. Phys Rev 160 (3): 577–584

    Article  Google Scholar 

  • Paul, O., Ruther, P., Plattner, L., Baltes, H. (2000): A thermal van der Pauw test structure. IEEE Trans Semicond Manufacturing, 13 (2): 159–166

    Article  Google Scholar 

  • Reider, G. A. (1997): Photonik: Eine Einführung in die Grundlagen. Springer.

  • Revaz, B., Zink, B. L., Hellman, F. (2005): Si-N membrane-based microcalorimetry: Heat capacity and thermal conductivity of thin films. Thermochimica Acta, 432: 158–168

    Article  Google Scholar 

  • Siegel, R., Howell, J. R. (2002): Thermal Radiation Heat Transfer, 4th edn. Taylor & Francis Inc.

  • Song, Q., Cui, Z., Xia, S., Chen, Z., Zhang, J. (2004): Measurement of SiNx thin film thermal property with suspended membrane structure. Sensors Actuators A, 112: 122–126

    Article  Google Scholar 

  • Völklein, F. (1990): Thermal conductivity and diffusivity of a thin film SiO2-Si3N4 sandwich system. Thin Solid Films, 188: 27–33

    Article  Google Scholar 

  • Völklein, F., Baltes, H. (1992): A microstructure for measurement of thermal conductivity of polysilicon thin films. J Microelectromech Sys, 1 (4): 193–196

    Article  Google Scholar 

  • Von Arx, M., Paul, O., Baltes, H. (2000): Process-dependent thin-film thermal conductivities for thermal CMOS MEMS. J Microelectromech Sys 9: 136–145

    Article  Google Scholar 

  • Yamamoto, M. (2002): Surface plasmon resonance theory: tutorial. Rev Polarogr, 48 (3): 209–237

    Google Scholar 

  • Yin, Z., Smith, F. W. (1990): Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective-medium-approximation analysis. Phys Rev B 42 (6): 3666–3675

    Article  Google Scholar 

  • Zink, B. L., Revaz, B., Cherry, J. J., Hellman, F. (2005): Measurement of thermal conductivity of thin films with a Si-N membrane-based microcalorimeter. Rev Sci Instrum 76: 024901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohl, F., Beigelbeck, R., Kuntner, J. et al. Zur Emissivität partiell transparenter, dielektrischer Schichten. Elektrotech. Inftech. 125, 56–64 (2008). https://doi.org/10.1007/s00502-008-0509-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-008-0509-0

Schlüsselwörter

Keywords

Navigation