Zusammenfassung
Jede Beeinträchtigung des Verkehrsflusses unterliegt konkreten Ursachen. Oft entstehen sie aus vorherrschenden Rahmenbedingungen wie Wetter oder besonderen Ereignissen. Ein vom BMVIT kofinanziertes Forschungsprojekt hat sich zum Ziel gesetzt, die Abhängigkeiten und Zusammenhänge zwischen verkehrsbeeinflussenden Rahmenbedingungen und der potentiellen Staugefahr zu untersuchen. Es werden Ansätze aus dem Visuellen Data Mining und der Künstlichen Intelligenz vorgestellt. Die Auswirkungen von Umgebungsbedingungen auf den Verkehrsfluss sind oftmals durch Bildung charakteristischer Muster vorhersagbar. Mit diesem Hintergrund kann ein neues Niveau der Verkehrsprognose umgesetzt werden.
Summary
Every interference of traffic flow is subject to different causes. The majority of them are related to prevailing circumstances like weather and events. During a research project which was co-financed by the Austrian Ministry of Transport coherences and dependencies between traffic sensitive circumstances and congestion risk were investigated. Approaches of visual data mining and artificial intelligence are introduced. The impact of environment conditions on traffic flow is often predictable through detection of characteristic patterns. On this knowledge a new quality of traffic forecast can be implemented.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Literatur
Asamer, J., Din, K., Toplak, W. (2007): Self Organizing Maps for Traffic Prediction. Proc. of the 25th IASTED Int. Multi-Conf. Artificial Intelligence and Applications. ISBN Hardcopy: 987-0-88986-629-4/CD: 978-0-88986-631-7, February 12–14, Innsbruck, Austria
ENV 13106 (2000): Road transport and traffic telematics – DATEX traffic and travel data dictionary, ISBN: 0580361586
Golob, T. E., Recker, W. W. (2001): Relationships Among Urban Freeway Accidents, Traffic Flow, Weather and Lightning Conditions. California PATH Working Paper, UCB-ITS-PWP-2001-19, California PATH Program, Institute of Transportation Studies, University of California, Berkeley
Himberg, J. (2000): A SOM-based cluster visualisation and its application for false colouring. Proc. of the IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks (IJCNN'00), 3: 587–592
Ishak, S., Alecsandru, C. (2004): Optimizing Traffic Prediction Performance of Neural Networks under Various Topological, Input, and Traffic Condition Settings. J. Transp. Engrg., 130 (4): 452–465
Ishak, S., Al-Deek, H. (2002): Performance Evaluation of a Short-Term Time-Series Traffic Prediction Model. Acc. for publ. ASCE. J. Transport. Eng., 128 (6): 490–498
Keim, D. A. (2002): Information Visualization and Visual Data Mining. IEEE Trans. on Visualization and Computer Graphics, 7 (1): 100–107, January–March
Kohonen, T. (1997): Self-Organizing Maps. Berlin, Heidelberg: Springer
Kwon, J., Coifman, B., Bickel, P. (2000): Day-to-Day Travel Time Trends and Travel Time Prediction from Loop Detector Data. Transportation Research Board Annual Meeting in Washington D.C., USA
Smith, B. L., Williams, B. M., Oswald, R. K. (2002): Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting. Transport. Res. C, 10 (4): 303–321
Sammon, J. W. (1969): A Non-Linear Mapping for Data Structure Analysis. IEEE Trans. Computers, C-18 (5): 401–409
Schneider, W., Asamer, J., Mrakotsky, M., Toplak, W. (2007): Influence of Environment Conditions on Traffic Flow. The 10th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC 2007), Sept. 30–Oct. 3, Seattle, USA
Toplak, W., Hainitz, N., Asamer, J. (2006): Prognosen mit Neuronalen Netzen und Neuro-Fuzzy-Modellen. Österreichische Gesellschaft für Artificial Intelligence. ÖGAI Journal, Jg 2006, Nr. 3: 24–33, Vol. 25, ISSN 0254-4326, Wien, Österreich
Toplak, W., Asamer, J., Din, K. (2007): Neural Networks supporting Causal Reasoning in Traffic Telematics. Proc. of the 25th IASTED Int. Multi-Conf. Artificial Intelligence and Applications. ISBN Hardcopy: 987-0-88986-629-4/CD: 978-0-88986-631-7, February 12–14, Innsbruck, Austria
TRB (2007): Artificial Intelligence in Transportation – Information for Application. Transportation Research Circular E-C113 Transportation Research Board, Artifical Intelligence and Advanced Computing Applications Committee, ISSN 0097-8515
Ultsch, A. (1993): Knowledge Extraction from Self-organizing Neural Networks. Information and Classification. Berlin: Springer: 301–306
Vesanto, J., Alhoniemi, E. (2000): Clustering of the Self-Organizing Map. IEEE Trans. Neural Networ., 11 (3): 586–600
Zell, A. (2000): Simulation neuronaler Netze. Oldenburg: Oldenburg Verlag
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schneider, W., Toplak, W. Verkehrsprognosen mit Visuellem Data Mining und Künstlicher Intelligenz. Elektrotech. Inftech. 125, 232–237 (2008). https://doi.org/10.1007/s00502-008-0538-8
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00502-008-0538-8