Skip to main content
Log in

Ultrasonic-based gas flowmeter for harsh environmental conditions

Ultraschall-Gasdurchflussmesser für raue Umgebungsbedingungen

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Die Eignung eines Ultraschall-basierten Gas-Durchflussmessers (Laufzeitprinzip) kann bezüglich des Gastemperaturbereichs erweitert werden (bis zu 450 °C). Mit Hilfe von Methoden der numerischen Strömungsmechanik und Schallstrahlsimulationen untersuchten wir thermisch bedingte Effekte, welche die Schallausbreitung innerhalb des Durchflussmessers beinflussen. Dadurch konnten die Geometrie und die Betriebsart des Durchflussmessers optimiert werden. Die präsentierten Ergebnisse belegen, dass ein solcher Durchflussmesser für die Messung einer pulsierenden Gasströmung über einen weiten Temperatur- und Strömungsgeschwindigkeitsbereich verwendet werden kann. Ein Anwendungsbeispiel ist der Abgasstrang eines automobilen Verbrennungsmotors.

Summary

The applicability of an ultrasonic transit-time gas flowmeter can be extended regarding its gas temperature range (up to 450°C). We used computational fluid dynamics and ray-tracing techniques to investigate thermally-related effects that influence the sound propagation inside the flowmeter. This allowed us to optimize the geometry and the method of how to operate the flowmeter. Our results prove that such a flowmeter can be used to measure pulsating gas flows over wide temperature and velocity ranges such as found in the exhaust gas train of an automotive combustion engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ao, X. S., Matson, J., Kucmas, P., Khrakovsky, O., Li, X. S. (2002): Ultrasonic clamp-on flow measurement of natural gas, steam and compressed Air. Proc. 5th Int. Symp. Fluid flow Measurement: 1–9

  • Beck, M., Hinterhofer, K. (1998): Direct high dynamic flow measurement in the exhaust of combustion engines. SAE 980880: 95–104

    Google Scholar 

  • Boone, M. M., Vermaas, E. A. (1991): A new ray-tracing algorithm for arbitrary inhomogeneous and moving media, including caustics. Acoust. Soc. Am., 90 (4): 2109–2117

    Article  Google Scholar 

  • Brassier, P., Hosten, B., Vulovic, F. (2001): High-frequency transducers and correlation method to enhance ultrasonic gas flow metering. Flow Meas. Instrum., 12: 201–211

    Article  Google Scholar 

  • Hauptmann, P., Hoppe, N., Püttmer, A. (2002): Application of ultrasonic sensors in the process industry. Meas. Sci. Technol., 13: 73–83

    Article  Google Scholar 

  • Iooss, B., Lhuillier, C., Jeanneau, H. (2002): Numerical simulation of transit-time ultrasonic flowmeters: uncertainties due to flow profile and fluid turbulence. Ultrasonics, 40: 1009–1015

    Article  Google Scholar 

  • Klee, P., Gebhardt, W. (1998): Die hochauflösende Messung von Abgasmassenstrom und -temperatur mittels Ultraschall. MTZ 59 (3): 188–194

    Google Scholar 

  • Kupnik, M., O'Leary, P., Schröder, A., Rungger, I. (2003): Numerical simulation of ultrasonic transit-time flowmeter performance in high-temperature gas flows. Proc. IEEE Ultrason. Symp.: 1354–1359

  • Kupnik, M., Schröder, A., O'Leary, P., Benes, E., Gröschl, M. (2006): Adaptive pulse repetition frequency technique for an ultrasonic transit-time gas flowmeter for hot pulsating gases. IEEE Sens. J., 6 (4): 906–915

    Article  Google Scholar 

  • Kupnik, M., Krasser, E., Gröschl, M. (2007): Absolute transit time detection for ultrasonic gas flowmeters based on time and phase domain characteristics. Proc. IEEE Ultrason. Symp.: 142–145

  • Launder, B. E., Spalding, D. B. (1974): The numerical computation of turbulent flows. Comput. Method. Appl. Mech. Eng., 3: 269–289

    Article  MATH  Google Scholar 

  • Lynnworth, L. C. (1989): Ultrasonic measurements for process control; theory, techniques, applications. San Diego: Academic Press Inc

    Google Scholar 

  • Lynnworth, L. C., Liu, Y. (2006): Ultrasonic flowmeters: Half-century progress report, 1955–2005. Ultrasonics, 44: 1371–1378

    Article  Google Scholar 

  • Mylvaganam, K. S. (1989): High-rangeability ultrasonic gas flowmeter for monitoring flare gas. IEEE Trans. Ultrason. Ferroelect. Freq. Contr.: 36, 144–149

    Google Scholar 

  • O'Sullivan, L. C., Wright, W. M. D. (2002): Ultrasonic measurement of gas flow using electrostatic transducers. Ultrasonics, 40: 407–411

    Article  Google Scholar 

  • Pierce, A. D. (1994): Acoustics: an introduction to its physical principles and applications. New York: Acoustical Society of America

    Google Scholar 

  • Schlichting, H., Gersten, K. (1996): Grenzschicht-Theorie, 9th edn. Berlin, Heidelberg: Springer

    Google Scholar 

  • Schröder, A., Harasek, S., Kupnik, M., Wiesinger, M., Gornik, E., Benes, E., Gröschl, M. (2004): A capacitance ultrasonic transducer for high-temperature applications. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51 (7): 895–906

    Google Scholar 

  • Schröder, A., Kupnik, M., O'Leary, P., Benesch, E., Gröschl, M. (2006): A capacitance ultrasonic transducer with micromachined backplate for fast flow measurements in hot pulsating gases. IEEE Sensor. J., 6 (4): 898–905

    Article  Google Scholar 

  • Shampine, L. F., Corless, R. M. (2000): Initial value problems for ODEs in problem solving environments. J. Comput. Appl. Math., 125 (1–2): 31–40

    Article  MathSciNet  MATH  Google Scholar 

  • Sick Maihak (2008): Datasheet of FLOWSIC 150 CARFLOW. [Online] Available: http://www.sick-maihak.de/

  • Sofialidis, D., Prinos, P. (1996): Fluid flow and heat transfer in a pipe with wall suction. Int. J. Heat. Mass. Tran., 40 (15): 3627–3640

    Article  MATH  Google Scholar 

  • Zollner, M., Zwicker, E. (1993): Elektroakustik, 3rd edn. Berlin, Heidelberg: Springer

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupnik, M., Gröschl, M. Ultrasonic-based gas flowmeter for harsh environmental conditions. Elektrotech. Inftech. 126, 206–213 (2009). https://doi.org/10.1007/s00502-009-0638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-009-0638-0

Schlüsselwörter

Keywords

Navigation