Skip to main content

Advertisement

Log in

Condition monitoring of Lithium-Ion Batteries for electric and hybrid electric vehicles

Zustandsüberwachung von Lithium-Ionen-Batterien in Elektro- und Hybridfahrzeugen

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Seit den frühen 1990ern stellen Lithium-Ionen-Batterien aufgrund ihrer hohen volumetrischen und gravimetrischen Energiedichten eine Schlüsseltechnologie im Bereich der wiederaufladbaren Batterien dar und wurden in Videokameras, Mobiltelefonen und Notebooks ("3-C-Anwendungen") verwendet. Laufende Verbesserungen haben zurzeit eine neue Welle von Forschungsaktivitäten ausgelöst, um das Anwendungsgebiet von kleinen Batterien mit dem Ziel zu erweitern, zuverlässige Energiespeicher für Fahrzeuganwendungen, z. B. für Hybridfahrzeuge, zu erhalten. Die hohen Energiemengen der großen Lithium-Ionen-Batterien werfen neue Fragestellungen zu den Problemkreisen Sicherheit und Lebensdauer auf und machen Methoden zur Überwachung des Alterungszustandes von Fahrzeugbatterien notwendig. Durch die Beobachtung signifikanter Systemvariablen können in vielen Fällen bevorstehendes Versagen von Einzelzellen oder Batteriepaketen vorhergesagt und entsprechende Gegenmaßnahmen eingeleitet werden. Dieser Beitrag gibt eine kurze Übersicht über den aktuellen Stand der Entwicklung von Hochleistungsbatterien für Hybrid- und Elektrofahrzeuge. Einen Schwerpunkt stellt die Überwachung der sicherheitsrelevanten Systemparameter wie Zellspannung, Systemtemperatur und Gasdruck sowie deren Einfluss auf den Alterungszustand (SOH) der Batterie und der Möglichkeit von Zellversagen. Dabei werden unterschiedliche In-situ-, Ex-situ- und Onboard-Messtechniken erörtert.

Summary

Since the early 1990s Lithium-Ion Batteries have stated a key technology in rechargeable batteries due to their high volumetric and gravimetric energy densities and were first introduced in personal devices like camcorders, cellular phones and mobile computers ("3-C applications"). Ongoing evolutionary advances release at present a new spate of research activities to extend the operational area of small-sized batteries with the final aim to achieve reliable energy storage in automotive environments (e.g. hybrid vehicles). High absolute energy amounts of large-scale Lithium-Ion Batteries raise safety and lifetime issues and set demands for methods to monitor the health conditions of batteries for automotive applications. By observing significant system variables, imminent failures of single cells or battery packs are in many cases predictable and suitable counteractions can be initiated. The paper gives a brief introduction to the state-of-the-art of advanced batteries for electric and hybrid electric vehicles. Special focus is put on the monitoring of safety-relevant system parameters like cell-voltage, system temperature and headspace-pressure, their significance on the battery's state-of-health (SOH) and possible cell-failures. Different in-situ, ex-situ and onboard measurement techniques are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aurbach, D., Markovsky, B., Weissman, I., Levi, E., Ein-Eli, Y. (1999): On the correlation between surface chemistry and performance of graphite negative electrodes for Li-Ion Batteries. Electrochimica Acta, 45: 67–86

    Article  Google Scholar 

  • Aurbach, D., Talyosef, Y., Markovsky, B., Markevich, E., Zinigrad, E., Asraf, L., Gnanaraj, J. S., Kim, H.-J. (2004): Design of electrolyte solutions for Li and Li-Ion Batteries: a review. Electrochimica Acta, 50: 247–254

    Article  Google Scholar 

  • Besenhard, J. O., Yang, J., Winter, M. (1997): Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sour., 68: 87–90

    Article  Google Scholar 

  • Du Pasquier, A., Huang, C. C., Spitler, T. (2009): Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J. Power Sour., 186: 508–514

    Article  Google Scholar 

  • Ganot, A., Atkinson, E. (1893): Elementary treatise on physics, experimental and applied, for the use of colleges and schools. New York, W. Wood

  • God, C. (2008): Alternative Elektrolytkomponenten zur Verbesserung der oxidativen Stabilität in Lithium-Ionen-Batterien. Institute for Chemistry and Technology of Materials. Graz, Graz University of Technology

  • Harada, S. (1992): Tubular Cell. JP 02-227564 (Sony)

  • Linden, D. (1995): Handbook of Batteries. New York: McGraw-Hill

  • Patil, A., Patil, V., Wook Shin, D., Choi, J.-W., Paik, D.-S., Yoon, S.-J. (2008): Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bulletin, 43: 1913–1942

    Article  Google Scholar 

  • Patoux, S., Sannier, L., Lignier, H., Reynier, Y., Bourbon, C., Jouanneau, S., Le Cras, F., Martinet, S. (2008): High voltage nickel manganese spinel oxides for Li-Ion Batteries. Electrochimica Acta, 53: 4137–4145

    Article  Google Scholar 

  • Sanyo, SANYO Lithium Ion Rechargable Batteries, http://www.sanyo.co.jp/energy/english/product/lithiumion_1.html, accessed 2.6.2008

  • Spitler, T. (2006): Lithium Ion Batteries. WO 2007/048142 A2 (Altair-Nano, Inc.)

  • Sternad, M. (2008): Silicon Insertion Electrodes for Lithium-Ion Batteries. Institute for Chemistry and Technology of Materials. Graz, Graz University of Technology

  • Tanaka, K. (1993): Nonaqueous Electrolyte Battery. JP 05-013105 (Sony)

  • Toyota, Sustainability Report (2008): http://www.toyota.co.jp/en/csr/report/08/special/index.html, accessed 26.11.2008

  • Winter, M., Besenhard, J. O. (1999): Rechargeable batteries. Part II. Secondary batteries with a nonaqueous electrolyte solution. Chemie in Unserer Zeit, 33: 320–332

    Article  Google Scholar 

  • Yamahira, T. (1992): Nonaqaeus Electrolyte Secondary Battery. JP 03-130687 (Sony)

  • Zhang, S. S. (2006): A review on electrolyte additives for lithium-ion batteries. J. Power Sour., 162: 1379–1394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternad, M., Cifrain, M., Watzenig, D. et al. Condition monitoring of Lithium-Ion Batteries for electric and hybrid electric vehicles. Elektrotech. Inftech. 126, 186–193 (2009). https://doi.org/10.1007/s00502-009-0644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-009-0644-2

Schlüsselwörter

Keywords

Navigation