Skip to main content
Log in

Holistic Approach for Future Energy Efficient Cellular Networks

Ganzheitlicher Lösungsansatz für zukünftige energieeffiziente Mobilfunknetze

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Weltweite Breitband-Mobilkommunikation trägt immer mehr zum globalen Energieverbrauch bei. Dieser Aufsatz untersucht die wichtige Problematik des Energiesparens durch Steigerung von Energieeffizienz mobiler Breitbandsysteme. Dies führt letztendlich zur Reduzierung des CO 2-Ausstoßes. Es wird zunächst eine ganzheitliche Systemansicht vorgelegt, welche verhindern soll, dass Ansätze zur Steigerung der Energieeffizienz die Energieeffizienz oder die Dienstleistung anderer Teile des Systems schmälern. Danach wird ein neuer Scheduling-Algorithmus präsentiert, welcher die Scheduling-Energieeffiezienz in OFDMA-basierten, drahtlosen, zellularen Netzen erhöht. Sein Ziel ist, die Gesamtenergieaufnahme des Downlinks unter Einhaltung der benötigten Spektraleffizienz und Dienstqualität zu reduzieren. Analysen zeigen, wie die vorgeschlagene Lösung beträchtliche Energiegewinne im Vergleich zu traditionellen Scheduling-Algorithmen, insbesondere in ungesättigten Netzen, erzielen kann.

Summary

Worldwide mobile broadband communications networks are increasingly contributing to global energy consumption. In this paper we tackle the important issue of energy saving by enhancing the energy efficiency of mobile broadband systems thereby reducing CO 2 emissions. We first provide a holistic system view aiming at ensuring that any proposed solutions to improve energy efficiency do not degrade the energy efficiency or performance on any other part of the system. Then, we present a novel scheduling algorithm that improves the scheduling energy efficiency in OFDMA-based wireless cellular networks. Our goal is to reduce the overall downlink energy consumption while adapting the target of spectral efficiency to the actual load of the system and meeting the Quality of Service. Our analysis reveals how the proposed approach permits to achieve notable energy gain over traditional scheduling algorithm especially in not saturated scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ambient Networks. EU FP6 IP, phase 1 2004–2005, phase 2 2006–2007, http://www.ambient-networks.org/

  • Arnold, O., Richter, F., Fettweis, G., Blume, O. (2010): Power consumption modeling of different base station types in heterogeneous cellular networks. Future Network and Mobile Summit, Italy

  • Badic, B., O'Farrel, T., Loskot, P., He, J. (2009): Energy efficiency radio access architectures for green radio: large versus small cell size deployment. In: Proc. of IEEE 70th Vehicular Technology Conference (VTC Fall), Anchorage, USA

  • Benini, L., Bogliolo, A., De Micheli, G. (2000): A survey of design techniques for system-level dynamic power management. IEEE Transactions on VLSI 8 (3): 299–316

    Article  Google Scholar 

  • Chiussi, F. M., Sivaraman, V. (1998): Achieving high utilization in guaranteed services networks using early-deadline-first scheduling. 6th Int'l. Wksp. QoS, 18–20 May 1998, 209–217

  • Cui, S., Goldsmith, A. J., Bahai, A. (2004): Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal Sel. Areas communications 22 (6): 1089–1098

    Article  Google Scholar 

  • Energy Aware Radio and neTworking tecHnologies European Community's Seventh Framework Programme: https://www.ict-earth.eu/

  • Etoh, M., Ohya, T., Nakayama, Y. (2008): Energy consumption issues on mobile network systems. NTT DOCOMO Research Lab. Int. Symp. on Applications and the Internet. 365–368

  • Gallager, R. G. (1988): Power limited channels: coding, multiaccess, and spread spectrum. In: Proc. Conf. Inform. Sci. and Syst., vol. 1

  • Goldsmith, A. J., Wicker, S. B. (2002): Design challenges for energy-constrained ad hoc wireless networks. IEEE Wireless Communications 9 (4): 8–27

    Article  Google Scholar 

  • GreenTouch: http://www.greentouch.org/

  • Gruber, M., Blume, O., Ferling, D., Zeller, D., Imran, M. A., Calvanese Strinati, E. (2009): Earth – energy aware radio and network technologies. IEEE PIMRC Workshop IOFC, Tokyo

  • Meshkati, F., Poor, H. V., Schwartz, S. C., Mandayam, N. B. (2006) An energy-effcient approach to power control and receiver design in wireless networks. IEEE Transactions on Communications 5: 3306–3315

    Article  Google Scholar 

  • Miao, G., Himayat, N., Li, Y. (2008): Cross-layer optimization for energy-efficient wireless communications: a survey. Wireless Communications and Mobile Computing 9 (4): 529–542, Special Issue: Next Generation Wireless Communications and Mobile Computing/Networking Technologies

  • Pokhariyal, A., Kolding, T. E., Mogensen, P. E. (2006): Performance of downlink frequency domain packet scheduling for the UTRAN long term evolution. In: Proc. of IEEE PIMRC, Helsinki, Finland

  • Ramachandran, V., et al. (2008): Frequency selective OFDMA scheduler with limited feedback. In: Proc. of IEEE WCNC, USA

  • Schurgers, C., Aberthorne, O., Srivastava, M. B. (2001): Modulation scaling for energy aware communication systems. Proc. ISLPED, Huntington Beach, CA

  • Simon Fletcher. (2009): Green radio – sustainable wireless networks. Mobile VCE Core 5 Programme Presentation. [Online] http://www.mobilevce.com/dloadspubl/mtg284Item1503.ppt

  • Verdu, S. (1990): On channel capacity per unit cost. IEEE Transactions on Information Theory 36: 1019–1030

    Article  MATH  MathSciNet  Google Scholar 

  • Yeh, J.-H., Chen, J.-C., Lee, C.-C. (2009): Comparative analysis of energy-saving techniques in 3GPP and 3GPP2 systems. IEEE Transactions on Vehicular Technology, 58 (1): 432–448

    Article  Google Scholar 

  • 3GPP TR 25.892 V6.0.0 (2004): Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement

  • 3GPP TSG RAN (2006–09): 3GPP TR.25814, Physical layer aspects for evolved UTRA (Release7). v7.1.0

  • 3GPP TSG-RAN1#48, Orange Labs (2007): R1-070674, LTE physical layer framework for performance verification. St Louis, USA

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvanese Strinati, E., Hérault, L. Holistic Approach for Future Energy Efficient Cellular Networks. Elektrotech. Inftech. 127, 314–320 (2010). https://doi.org/10.1007/S00502-010-0782-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/S00502-010-0782-6

Schlüsselwörter

Keywords

Navigation