Abstract
The goal of Ambient Assisted Living Systems is to provide automated technological aids for the elderly to allow for longer independent living in one’s own premises without the need for transition to stationary care. Such systems target to overcome problems introduced by particular risks of the target group like falling down, risk of illnesses, risk of dementia, etc. Current systems, however, still impose substantial effort in commissioning the system and they lack accuracy in detecting serious problems of the resident. In this article we present methods for relieved commissioning, i.e. automatic detection of the sensors’ types and topology, for added fault tolerance, and for modeling and evaluating human activity patterns with the goal of launching meaningful alarms.
Zusammenfassung
Das Ziel von Ambient Assisted Living-Systemen ist es, automatisierte technische Hilfestellung für ältere Personen zur Verfügung zu stellen, um längeres unabhängiges Wohnen im eigenen, gewohnten Wohnumfeld zu ermöglichen, ohne dass eine Aufnahme in die stationäre Betreuung nötig wird. Diese Systeme zielen darauf ab, den Problemen durch typische altersbedingte Risken wie Demenz, Stürzen oder Krankheit entgegenzuwirken. Aktuell erhältliche Systeme haben aber die Nachteile, dass sie großen Kommissionierungsaufwand benötigen und dass die Detektionsrate bei kritischen Fällen noch zu niedrig ist. In diesem Artikel zeigen wir daher Methoden für eine vereinfachte, teilautomatische Kommissionierung, in diesem Fall durch automatische Erkennung der Sensoren und deren Typen, durch automatisches Lernen der Topologie des Systems und durch Einführen von Fehlertoleranz. Weiters wird eine Methode zur Modellierung und Evaluierung von Tagesablaufmustern vorgestellt, mit dem Ziel, sinnvollere Alarme zu generieren.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
Due to structure learning of the model the exact mapping of the initial sequences to states gets lost (the model generalizes), with the gain of similar sequences achieving similar results. That parity is measured in terms of probability, which decreases with every comparison in the model (i.e. in our model over time, from left to right). Since the probability reaches very little and cumbersome values (10−20), the logarithm thereof is used on the scale.
References
Barnes, D. E., Yaffe, K., Belfor, N., Jagust, W. J., DeCarli, C., Reed, B. R., Kramer, J. H. (2010): Computer-based cognitive training for mild cognitive impairment: results from a pilot randomized, controlled trial. Alzheimer Dis. Assoc. Disord., 23(3), 205–210.
Bruckner, D. (2007): Probabilistic models in building automation: recognizing scenarios with statistical methods. Ph.D. dissertation, Vienna University of Technology, Institute of Computer Technology.
Bruckner, D., Velik, R. (2010): Behavior learning in dwelling environments with hidden Markov models. IEEE Trans. Ind. Electron., 57(11), 3653–3660.
Bruckner, D., Sallans, B., Lang, R. (2007): Behavior learning via state chains from motion detector sensors. In Proceedings of the 2nd IEEE BIONETICS.
Bruckner, D., Zeilinger, H., Dietrich, D. (2012): Cognitive automation—survey of novel artificial general intelligence methods for the automation of human technical environments. IEEE Trans. Ind. Inform., 8(2), 206–215.
Desovski, D., Liu, Y., Cukic, B. (2005): Linear randomized voting algorithm for fault tolerant sensor fusion and the corresponding reliability model. In Ninth IEEE international symposium on high-assurance systems engineering, 2005. HASE 2005 (pp. 153–162). ISSN 1530-2059.
Faltinger, A. (2011): Algorithms for sensor fusion in ambient assisted living systems, TU Vienna, Diploma Thesis, Nov 2011.
Ghasemzadeh, H., Jafari, R. (2011): Physical movement monitoring using body sensor networks: a phonological approach to construct spatial decision trees. IEEE Trans. Ind. Inform., 7, 66–77.
Giannakouris, K. (2010): Regional population projections europop2008: Most EU regions face older population profile in 2030. Eurostat—statistics in focus, Tech. Rep.
Kistler, R., Knauth, S., Klapproth, A. (2008): An adaptive network architecture for home- and building environments. In Proc. of IEEE int. conf. on emerging technologies and factory automation, ETFA (p. 295).
Lu, G., Xue, W. (2010): Adaptive weighted fusion algorithm for monitoring system of forest fire based on wireless sensor networks. In Second international conference on computer modeling and simulation, 2010. ICCMS ’10 (Vol. 4, pp. 414–417).
Luo, R., Hsu, T., Lin, T., Su, K. (2005): The development of intelligent home security robot. In Proc. of IEEE int. conf. on mechatronics (p. 422).
Mitterbauer, J. (2008): Behavior recognition and prediction in building automation systems, TU Vienna, Diploma Thesis, Nov 2008.
Picus, C., Cambrini, L., Herzner, W. (2008): Boltzmann machine topology learning for distributed sensor networks using loopy belief propagation inference. In Seventh international conference on machine learning and applications, 2008. ICMLA ’08 (pp. 344–349).
Rabiner, L. R., Juang, B.-H. (1986): An introduction to hidden Markov models. IEEE ASSAP Mag., 3, 4–16.
Sallans, B., Bruckner, D., Russ, G. (2005): Statistical model-based sensor diagnostics for automation systems. In Proceedings of 6th IFAC FET.
Sallans, B., Bruckner, D., Russ, G. (2006): Statistical detection of alarm conditions in building automation. In Proceedings of 4th IEEE INDIN.
Shu Qing, L., Sheng Xiu, Z. (2010): A congeneric multi-sensor data fusion algorithm and its fault-tolerance. In International conference on computer application and system modeling (ICCASM), 2010 (Vol. 1, pp. 339–342).
Tao, Y., Wei, H., Wang, T., Chen, D. (2008): A multi-layered interaction architecture for elderly companion robot. In Intelligent robotics and applications. Lecture notes in computer science (Vol. 5314/2008, pp. 538–546). Berlin: Springer.
Urbano, M., Fonseca, J., Nunes, U., Figueiredo, L., Lopes, A. (2008): Adaptation of powered wheelchairs for quadriplegic patients with reduced strength. In Proc. of IEEE int. conf. on emerging technologies and factory automation, ETFA (pp. 1104–1107).
Yin, G. Q., Bruckner, D. (2010): Daily activity learning from motion detector data for ambient assisted living. In Proceedings of the 3rd IEEE HSI.
Yin, G. Q., Bruckner, D. (2011): Build user daily activity model and model structure changing. In Proceedings of the 10th IEEE AFRICON.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bruckner, D., Yin, G.Q. & Faltinger, A. Relieved commissioning and human behavior detection in Ambient Assisted Living Systems. Elektrotech. Inftech. 129, 293–298 (2012). https://doi.org/10.1007/s00502-012-0015-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-012-0015-2