Skip to main content
Log in

Nichtlineare modellprädiktive Regelung eines Brammenwärmofens basierend auf einem zeitkontinuierlichen Zustandsraummodell

Nonlinear model predictive control of a pusher-type slab reheating furnace based on a continuous-time state-space model

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

A nonlinear model predictive controller is developed as part of a cascade temperature control system for a continuous furnace that reheats steel slabs. Using a continuous-time state-space model based on first principles, a constrained dynamic optimization problem is formulated. It is converted into an unconstrained optimization problem by means of an input transformation and additional penalty terms in the cost functional. With the help of the quasi-Newton method, the optimization problem is recurrently solved for finite time horizons. The measured furnace temperatures as well as the slab temperatures, which are estimated by an extended Kalman filter, are used as feedback. Results from the application of the control system in a slab furnace of a rolling mill demonstrate the high accuracy of the slab reheating process and significant energy savings.

Zusammenfassung

Es wird ein nichtlinearer modellprädiktiver Regler als Teil einer kaskadierten Temperaturregelung eines kontinuierlichen Ofens zur Erwärmung von Stahlbrammen entwickelt. Dazu wird aufbauend auf einem physikalisch motivierten, zeitkontinuierlichen Zustandsraummodell ein beschränktes dynamisches Optimierungsproblem formuliert und mittels einer Transformation von Eingangsgrößen sowie zusätzlichen Straftermen im Kostenfunktional in eine unbeschränkte Optimierungsaufgabe übergeführt. Das Optimierungsproblem wird mit dem Quasi-Newton-Verfahren wiederkehrend für finite Zeithorizonte gelöst. Als Rückkopplung werden neben gemessenen Ofentemperaturen die mit einem erweiterten Kalman-Filter geschätzten Brammentemperaturen verwendet. Ergebnisse aus der Anwendung des Regelungssystems bei einem Brammenwärmofen eines Walzwerks belegen die hohe Genauigkeit der Brammenerwärmung und eine erhebliche Energieeinsparung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Literatur

  • Azhmyakov, V. (2007): Consistent Approximations of Constrained Optimal Control Problems. Logos, Berlin

  • Baehr, H., Stephan, K. (2006): Heat and Mass Transfer. Springer, Berlin Heidelberg, 2nd edition

  • Balbis, L., Balderud, J., Grimble, M. (2008): Nonlinear predictive control of steel slab reheating furnace. Proceedings of the American Control Conference, Seattle, Washington, USA, S. 1679–1684

  • Barr, P. (1995): The development, verification, and application of a steady-state thermal model for the pusher-type reheat furnace. Metallurgical and Materials Transactions B, 26B: 851–869

  • Barr, P. (2003): Examining reheating furnace thermal response to mill delays. Proceedings of Materials Science & Technology 2003, Chicago, Illinois, USA, S. 126–135

  • Betts, J. (2001): Practical Methods for Optimal Control Using Nonlinear Programming. Advances in Design and Control. Siam, Philadelphia

  • Bryson, A. (1999): Dynamic Optimization. Addison-Wesley, Menlo Park, California, USA

  • Camacho, E., Bordons, C. (2004): Model Predictive Control. Advanced Textbooks in Control and Signal Processing. Springer, 2nd edition

  • Carpenter, D., Proctor, C. (1987): Temperature control and optimization of a reheat furnace using a distributed control system. Iron and Steel Engineer, 64(8): 44–49

    Google Scholar 

  • Chen, S. (2009): Flat-Rolled Steel Processes: Advanced Technologies, chapter Modeling for Reheat Furnace Practices, S. 99–114. CRC Press, Boca Raton

  • Chen, S., Abraham, S., Poshard, D. (2008): Modification of reheat furnace practices through comprehensive process modeling. Iron & Steel Technology, 5(8): 66–79

    Google Scholar 

  • Dahm, B., Klima, R. (2002): Feedback control of stock temperature and oxygen content in reheating furnaces. Proceedings of the IOM Conference on Challenges in Reheating Furnaces, London, UK, S. 287–296

  • Ditzhuijzen, G., Staalman, D., Koorn, A. (2002): Identification and model predictive control of a slab reheating furnace. Proceedings of the 2002 IEEE International Conference on Control Applications, Glasgow, UK, S. 361–366

  • Doss, B., Chu, E., Mason, H., Ruiz, R., Chan, I., Kleppe, J., Jensen, J. (1992): Steel process furnace burner control using acoustic pyrometry. Proceedings of the International Gas Research Conference, Orlando, USA, S. 2231–2240

  • Ezure, H., Seki, Y., Yamaguchi, N., Shinonaga, H. (1997): Development of a simulator to calculate an optimal slab heating pattern for reheat furnaces. Electrical Engineering in Japan, 120 (3): 42–53

    Article  Google Scholar 

  • Facco, G., Petersen, M., Schurko, R., Ferguson, N. (1990): State of the art slab reheating furnaces at Dofasco. Iron and Steel Engineer, 67 (1): 27–36

    Google Scholar 

  • Ferrand, L., Reynes, P., Le Duigou, F. (2006): Simulation tools make new furnace technology. La Revue de Métallurgie, 103 (2): 67–75

    Article  Google Scholar 

  • Fiacco, A., McCormick, G. (1990): Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Number 4 in Classics in Applied Mathematics. Siam, Philadelphia, Pennsylvania

  • Findeisen, R., Biegler, L., Allgöwer, F., editors (2008): Assessment and Future Directions of Nonlinear Model Predictive Control, volume 26 of Lecture Notes in Control and Information Sciences. Springer, Berlin

  • Fontana, P., Boggiano, A., Furinghetti, A., Cabras, G., Simoncini, C. (1983): An advanced computer control system for reheat furnaces. Iron and Steel Engineer, 60 (8): 55–62

    Google Scholar 

  • Graichen, K., Kugi, A. (2010): Stability of incremental model predictive control without terminal constraints. IEEE Transactions on Automatic Control, 55 (11): 2576–2580

    Article  MathSciNet  Google Scholar 

  • Graichen, K., Petit, N. (2009): Incorporating a class of constraints into the dynamics of optimal control problems. Optimal Control Applications and Methods, 30 (6): 537–561

    Article  MathSciNet  Google Scholar 

  • Hollander, F., Zuurbier, S. (1982): Design, development and performance of online computer control in a 3-zone reheating furnace. Iron and Steel Engineer, 59 (1): 44–52

    Google Scholar 

  • Hollander, F., Zuurbier, S. (1985): Accurate temperature control of the reheating process at mixed cold and hot charging. Proceedings of the International Conference on Process Control and Energy Savings in Reheating Furnaces, Scanheating, Luleå, Sweden, S. 6:1–6:36

  • Icev, Z., Zhao, J., Stankovski, M., Kolemisevska-Gugulovska, T., Dimirovski, G. (2004): Supervisory-plus-regulatory control design for efficient operation of industrial furnaces. Journal of Electrical & Electronics Engineering, 4 (2): 1199–1218

    Google Scholar 

  • Incropera, F., DeWitt, D., Bergman, T., Lavine, A. (2007): Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Hoboken, New Jersey, 6th edition

  • Kang, D.-H., Lorente, S., Bejan, A. (2010): Constructal architecture for heating a stream by convection. International Journal of Heat and Mass Transfer, 53: 2248–2255

    Article  MATH  Google Scholar 

  • Knoop, P., van Nerom, L. (2003): Scheduling requirements for hot charge optimization in an integrated steel plant. Proceedings of the 2003 IEEE Industry Applications Conference, 38th IAS Annual Meeting, Salt Lake City, Utah, USA, 1: 74–78

  • Ko, H., Kim, J., Yoon, T., Lim, M., Yang, D., Jun, I. (2000): Modeling and predictive control of a reheating furnace. Proceedings of the American Control Conference, Chicago, Illinois, USA, 4: 2725–2729

  • Leden, B. (1986): A control system for fuel optimization of reheating furnaces. Scandinavian Journal of Metallurgy, 15: 16–24

    Google Scholar 

  • Lee, E., Markus, L. (1967): Foundations of optimal control theory. The SIAM Series in Applied Mathematics. John Wiley & Sons, New York

  • Leifgen, U., Ganesaratnam, S., Croce, L. (2011): A new concept for the control of reheating furnaces for slabs. Proceedings of the 1st International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry, EECR STEEL, Düsseldorf, Germany

  • Modest, M. (2003): Radiative Heat Transfer. Academic Press, New York, 2nd edition

  • Nederkoorn, E., Wilgen, P., Schuurmans, J. (2011): Nonlinear model predictive control of walking beam furnaces. Proceedings of the 1st International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry, EECR STEEL, Düsseldorf, Germany

  • Nocedal, J., Wright, S. (2006): Numerical Optimization. Springer Series in Operations Research. Springer, New York, 2nd edition

  • Pedersen, L., Wittenmark, B. (1998): On the reheat furnace control problem. Proceedings of the American Control Conference, Philadelphia, Pennsylvania, USA, S. 3811–3815

  • Rawlings, J., Mayne, D. (2009): Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison, Wisconsin

  • Rixin, L., Baolin, N. (1992): Mathematical model for dynamic operation and optimum control of pusher type slab reheating furnace. Industrial Heating, 59 (3): 60–62

    Google Scholar 

  • Sibarani, H., Samyudia, Y. (2004): Robust nonlinear slab temperature control design for an industrial reheating furnace. Computer Aided Chemical Engineering, 18: 811–816

    Article  Google Scholar 

  • Speyer, J., Jacobson, D. (2010): Primer on Optimal Control Theory. Advances in Design and Control. Siam, Philadelphia

  • Staalman, D. (2004): The funnel model for accurate slab temperature in reheating furnaces. La Revue de Métallurgie, 101 (7): 453–459

    Article  Google Scholar 

  • Steinboeck, A., Graichen, K., Kugi, A. (2011a): Dynamic optimization of a slab reheating furnace with consistent approximation of control variables. IEEE Transactions on Control Systems Technology, 16 (6): 1444–1456

    Article  Google Scholar 

  • Steinboeck, A., Graichen, K., Wild, D., Kiefer, T., Kugi, A. (2011b): Model-based trajectory planning, optimization, and open-loop control of a continuous slab reheating furnace. Journal of Process Control, 21 (2): 279–292

    Article  Google Scholar 

  • Steinboeck, A., Wild, D., Kiefer, T., Kugi, A. (2010): A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media. International Journal of Heat and Mass Transfer, 53: 5933–5946

    Article  MATH  Google Scholar 

  • Steinboeck, A., Wild, D., Kiefer, T., Kugi, A. (2011c). A fast simulation method for 1D heat conduction. Mathematics and Computers in Simulation, 82 (3): 392–403

    Article  Google Scholar 

  • Steinboeck, A., Wild, D., Kugi, A. (2011d). Feedback tracking control of continuous reheating furnaces. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), Milan, Italy, S. 11744–11749

  • Stengel, R. (1994): Optimal Control and Estimation. Dover Publications, New York

  • Stoer, J., Bulirsch, R. (2002): Introduction to numerical analysis. Number 12 in Texts in Applied Mathematics. Springer, New York, Berlin, 3rd edition

  • Vode, F., Jaklič, A., Kokalj, T., Matko, D. (2008): A furnace control system for tracing reference reheating curves. Steel Research International, Metal Forming, 79 (5): 364–370

    Google Scholar 

  • Wang, P. (1993): Optimierung der Brennstoffverteilung in Durchlauföfen. PhD thesis, Technische Universität Clausthal, Clausthal, Germany

  • Wang, Z., Chai, T., Guan, S., Shao, C. (1999): Hybrid optimization setpoint strategy for slab reheating furance temperature. Proceedings of the American Control Conference, San Diego, California, USA, S. 4082–4086

  • Wang, Z., Wu, Q., Chai, T. (2004): Optimal-setting control for complicated industrial processes and its application study. Control Engineering Practice, 12: 65–74

    Article  Google Scholar 

  • Wild, D. (2010): Modellierung und Beobachterentwurf für einen Stoßofen. PhD thesis, Vienna University of Technology, Austria, Shaker Verlag, Aachen, Germany

  • Wild, D., Meurer, T., Kugi, A. (2009a): Modelling and experimental model validation for a pusher-type reheating furnace. Mathematical and Computer Modelling of Dynamical Systems, 15 (3): 209–232

    Article  MATH  Google Scholar 

  • Wild, D., Meurer, T., Kugi, A., Eberwein, K., Bödefeld, B., Bott, M. (2009b): Entwurf eines nichtlinearen Zustandsschätzers für einen Stoßofen. Stahl und Eisen, 129 (1): 45–50

    Google Scholar 

  • Wild, D., Meurer, T., Kugi, A., Fichet, O., Eberwein, K. (2007): Nonlinear observer design for pusher-type reheating furnaces. Proceedings of the 3rd International Steel Conference on New Developments in Metallurgical Process Technologies, Düsseldorf, Germany, S. 790–797

  • Wills, A., Heath, W. (2003): An exterior/interior-point approach to infeasibility in model predictive control. Proceedings of the 42th IEEE Conference on Decision and Control, Maui, Hawaii, USA, S. 3701–3705

  • Yang, Y., Lu, Y. (1988): Dynamic model based optimization control for reheating furnaces. Computers in Industry, 10: 11–20

    Article  MATH  Google Scholar 

  • Yoshitani, N., Ueyama, T., Usui, M. (1994): Optimal slab heating control with temperature trajectory optimization. Proceedings of the 20th International Conference on Industrial Electronics, Control and Instrumentation, IECON'94, Bologna, Italy, 3: 1567–1572

  • Zhang, B., Chen, Z., Xu, L., Wang, J., Zhang, J., Shao, H. (2002): The modeling and control of a reheating furnace. Proceedings of the American Control Conference, Anchorage, Alaska, USA, S. 3823–3828

  • Zhang, B., Xu, L., Wang, J., Shao, H. (2001): Optimization of combustion control based on fuzzy logic. Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia, S. 1080–1083

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Steinböck, A., Kugi, A. Nichtlineare modellprädiktive Regelung eines Brammenwärmofens basierend auf einem zeitkontinuierlichen Zustandsraummodell. Elektrotech. Inftech. 129, 3–10 (2012). https://doi.org/10.1007/s00502-012-0067-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-012-0067-3

Keywords

Schlüsselwörter

Navigation