Skip to main content
Log in

Schnelle Rasterkraftmikroskopie durch moderne Regelungstechnik und mechatronische Systemintegration

High-speed atomic force microscopy by modern control and mechatronic system integration

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

In atomic force microscopy (AFM) high-performance and high precision control of the scanning-system is crucial. At high imaging speeds the dynamic behaviour of the scanner may cause imaging artefacts limiting the maximum imaging rate. This contribution discusses recent improvements for faster imaging by utilizing modern mechatronic and control engineering methods.

Zusammenfassung

Für die Rasterkraftmikroskopie (AFM) ist eine schnelle und hochpräzise Führung der AFM-Positioniereinheit und Messspitze ausschlaggebend. Besonders bei hohen Scangeschwindigkeiten führt die Dynamik der AFM-Positioniereinheit zu Abbildungsartefakten, wodurch die maximale Messgeschwindigkeit und Bildqualität eingeschränkt wird. In diesem Artikel werden moderne Ansätze diskutiert, welche zu einer signifikanten Steigerung der Messgeschwindigkeiten führen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P., Longmire, M., Gurley, J. (1989): An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys., 65: 164

    Article  Google Scholar 

  • Bhikkaji, B., Ratnam, M., Fleming, A. J., Moheimani, S. O. R. (2007): High performance control of piezoelectric tube scanners. IEEE Trans. Control Syst. Technol., 15: 853–866

    Article  Google Scholar 

  • Binnig, G., Quate, C., Gerber, C. (1986): Atomic force microscope. Phys. Rev. Lett., 56 (9): 930–933

    Article  Google Scholar 

  • Binnig, G., Smith, D. (1986): Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev. Sci. Instrum., 57: 1688–1698

    Article  Google Scholar 

  • Croft, D., Shed, G., Devasia, S. (2001): Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy applications. AMSE J. Dyn. Syst. Meas. Control, 123: 35–43

    Article  Google Scholar 

  • Dosch, J., Inman, D., Garcia, E. (1992): A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struc., 3: 166–185

    Article  Google Scholar 

  • Fleming, A., Moheimani, S. (2006): Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners. IEEE Trans. Control Syst. Technol., 14: 33–44

    Article  Google Scholar 

  • Hansma, P., Schitter, G., Fantner, G., Prater, C. (2006): High speed atomic force microscopy. Science, 314: 601–602

    Article  Google Scholar 

  • Kuiper, S., Fleming, A., Schitter, G. (2010): Dual actuation for high speed atomic force microscopy. In: Proc. IFAC Mechatronics Conf

  • Kuiper, S., Schitter, G. (2009): Self-Sensing Actuation and Damping of a Piezoelectric Tube Scanner for Atomic Force Microscopy. European Control Conf., 2009

  • Kuiper, S., Schitter, G. (2010): Active damping of a piezoelectric tube scanner using self-sensing piezo actuation. Mechatronics, 20: 656–665

    Article  Google Scholar 

  • Kuiper, S., Schitter, G. (2011): Model-based feedback controller design for dual actuated atomic force microscopy. Mechatronics (in press)

  • Picco, L., Bozec, L., Ulcinas, A., Engledew, D., Antognozzi, M., Horton, M., Miles, M. (2007): Breaking the speed limit with atomic force microscopy. Nanotechnology, 18 (044030): 4

    Google Scholar 

  • Rifai, O., Youcef-Toumi, K. (2001): Coupling in piezoelectric tube scanners used in scanning probe microscope. Proc. Amer. Control. Conf., 4: 3251–3255

    Google Scholar 

  • Salapaka, S., Sebastian, A., Cleveland, J., Salapaka, M. (2002): High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum., 73: 3232

    Article  Google Scholar 

  • Sarid, D. (1994): Scanning force microscopy: with applications to electric, magnetic, and atomic forces. Oxford University Press, USA

  • Schitter, G. (2009): Improving the Speed of AFM by Mechatronic Design and Modern Control Methods. Tech. Mess., 76 (5): 266–273

    Article  Google Scholar 

  • Schitter, G., Stemmer, A. (2004): Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy. IEEE Trans. Control Syst. Technol., 12: 449–454

    Article  Google Scholar 

  • Schroeck, S., Messner, W. (1999): On controller design for linear time-invariant dual-input singleoutput systems. Proc. Amer. Control Conf., vol. 6

  • Sebastian, A., Salapaka, S. (2005): Design methodologies for robust nano-positioning. IEEE Trans. Control Syst. Technol., 13 (6): 868–876

    Article  Google Scholar 

  • Sulchek, T., Minne, S., Adams, J., Fletcher, D., Atalar, A., Quate, C., Adderton, D. (1999): Dual integrated actuators for extended range high speed atomic force microscopy. Appl. Phys. Lett., 75: 1637–1639

    Article  Google Scholar 

  • Tamer, N., Dahleh, M. (1994): Feedback control of piezoelectric tube scanners. In: Proc. 33rd IEEE Conf. Decis. Control, 2: 1826–1831

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steininger, J., Kuiper, S., Ito, S. et al. Schnelle Rasterkraftmikroskopie durch moderne Regelungstechnik und mechatronische Systemintegration. Elektrotech. Inftech. 129, 28–33 (2012). https://doi.org/10.1007/s00502-012-0070-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-012-0070-8

Keywords

Schlüsselwörter

Navigation