Abstract
Due to the increase in volatile renewable power and heat generation (wind or solar), thermal energy storage (TES) has obtained growing importance and interest. The technology can be distinguished into three main types: sensible, latent and thermochemical storage. Apart from low and medium temperature heat applications, high temperature TES also is an attractive means to store power in the form of heat (before the thermodynamic transformation process). Thermochemical storage allows for long duration seasonal storage of energy.
Zusammenfassung
Zufolge der Zunahme der Erzeugung von Strom und Wärme aus volatilen erneuerbaren Quellen wie Sonne oder Wind hat auch die thermische Energieerzeugung enorm an Bedeutung und Interesse gewonnen. Die Technologien werden nach dem Grundprinzip üblicherweise in sensible, latente und thermochemische Speicherung unterschieden. Abgesehen von Wärme-Anwendungen im Niedrig- und Mittel-Temperatur-Bereich, bietet die Hochtemperatur-Wärmespeicherung attraktive Lösungen auch zur Speicherung von Strom, indem die Wärme noch vor der Transformation im thermodynamischen Prozess gespeichert wird. Thermochemische Speicherung hat das Potential, längerfristig Energie zu speichern.




Similar content being viewed by others
References
Drück, H. (2012): Thermische Energiespeicher – Technologien und Perspektiven. In VDI, Forum Thermische Energiespeicher, Linz.
Freund, S., Marquardt, R., Moser, P. (2013): ADELE adiabatic compressed air energy storage—status and perspectives. VGB Power Tech, 5.
García, E., Calvo, R. (2012): One year operation experience in gemasolar plant. In SolarPACES conference.
Kato, Y., Sasaki, Y., Yoshizawa, Y. (2005): Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system. Energy, 30, 2144–2155.
Koehler, J. (2012): Dynamische Simulation von Thermopotentialspeichern. Diplomarbeit TU Wien.
Laing, D., Bahl, C., Fiß, M. (2012): Commissioning of a thermal energy storage system for direct steam generation. In SolarPACES conference.
Ma, Q., Luo, L., Sauce, G. (2009): A review on transportation of heat energy over long distance: exploratory development. Renew. Sustain. Energy Rev., 13, 1532–1540.
Mercangöz, M., Hemrle, J., Kaufmann, L., Graggen, Z., Ohler, Ch. (2012): Electrothermal energy storage with transcritical CO2 cycles. Energy, 45, 407–415.
Relloso, S., Delgado, E. (2010): Experience with molten salt storage in a commercial parabolic trough plant. In SolarPACES conference.
Roeb, M., Sattler, Ch. (2013): Thermochemical reactions for solar energy storage and fuel production. In Eurotherm seminar 98, Vienna.
Schwaiger, K., Haider, M. (2013): Applications of sandTES active fluidization in CSP. In Eurotherm 98 seminar, Vienna.
Stahl, K., Zunft, S., Kessler, S., Siebert, M. (2012): Entwicklung eines Hochtemperatur-Wärmespeichers zur Flexibilisierung von GuD-Kraftwerken. KWTK Dresden.
Stöver, B., Rehfeldt, S., Alekseev, A., Stiller, Ch. (2013): Process engineering and thermodynamic evaluation of concepts for liquid air energy storage. Vienna: Power Gen.
Ullmann, U., Tamme, R., Bauer, T., Hahne, E. (2013): Heat storage media. Ullmann encyclopedia of chemical engineers.
van Essen, V. M., et al. (2009): Characterization of salt hydrates for compact seasonal thermochemical storage. In Proceedings of ES2009, San Francisco, California, USA. New York: ASME (pp. 1–7).
Yu, Y. Q., Zhang, P., Wu, J. Y., Wang, R. Z. (2008): Energy upgrading by solid-gas reaction heat transformer: a critical review. Renew. Sustain. Energy Rev., 12, 1302–1324.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haider, M., Werner, A. An overview of state of the art and research in the fields of sensible, latent and thermo-chemical thermal energy storage. Elektrotech. Inftech. 130, 153–160 (2013). https://doi.org/10.1007/s00502-013-0151-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-013-0151-3
Keywords
- thermal energy storage
- storage
- energy storage
- power
- heat
- latent
- sensible
- thermochemical
- electrothermal
- thermodynamic
- ACAES
- PHES
- LAES
- ETES
- CSP