Skip to main content

Advertisement

Log in

An overview of state of the art and research in the fields of sensible, latent and thermo-chemical thermal energy storage

Ein Überblick zum Stand der Technik und Forschung im Bereich sensibler, latenter und thermochemischer Wärmespeicherung

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Due to the increase in volatile renewable power and heat generation (wind or solar), thermal energy storage (TES) has obtained growing importance and interest. The technology can be distinguished into three main types: sensible, latent and thermochemical storage. Apart from low and medium temperature heat applications, high temperature TES also is an attractive means to store power in the form of heat (before the thermodynamic transformation process). Thermochemical storage allows for long duration seasonal storage of energy.

Zusammenfassung

Zufolge der Zunahme der Erzeugung von Strom und Wärme aus volatilen erneuerbaren Quellen wie Sonne oder Wind hat auch die thermische Energieerzeugung enorm an Bedeutung und Interesse gewonnen. Die Technologien werden nach dem Grundprinzip üblicherweise in sensible, latente und thermochemische Speicherung unterschieden. Abgesehen von Wärme-Anwendungen im Niedrig- und Mittel-Temperatur-Bereich, bietet die Hochtemperatur-Wärmespeicherung attraktive Lösungen auch zur Speicherung von Strom, indem die Wärme noch vor der Transformation im thermodynamischen Prozess gespeichert wird. Thermochemische Speicherung hat das Potential, längerfristig Energie zu speichern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Drück, H. (2012): Thermische Energiespeicher – Technologien und Perspektiven. In VDI, Forum Thermische Energiespeicher, Linz.

    Google Scholar 

  2. Freund, S., Marquardt, R., Moser, P. (2013): ADELE adiabatic compressed air energy storage—status and perspectives. VGB Power Tech, 5.

  3. García, E., Calvo, R. (2012): One year operation experience in gemasolar plant. In SolarPACES conference.

    Google Scholar 

  4. Kato, Y., Sasaki, Y., Yoshizawa, Y. (2005): Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system. Energy, 30, 2144–2155.

    Article  Google Scholar 

  5. Koehler, J. (2012): Dynamische Simulation von Thermopotentialspeichern. Diplomarbeit TU Wien.

  6. Laing, D., Bahl, C., Fiß, M. (2012): Commissioning of a thermal energy storage system for direct steam generation. In SolarPACES conference.

    Google Scholar 

  7. Ma, Q., Luo, L., Sauce, G. (2009): A review on transportation of heat energy over long distance: exploratory development. Renew. Sustain. Energy Rev., 13, 1532–1540.

    Article  Google Scholar 

  8. Mercangöz, M., Hemrle, J., Kaufmann, L., Graggen, Z., Ohler, Ch. (2012): Electrothermal energy storage with transcritical CO2 cycles. Energy, 45, 407–415.

    Article  Google Scholar 

  9. Relloso, S., Delgado, E. (2010): Experience with molten salt storage in a commercial parabolic trough plant. In SolarPACES conference.

    Google Scholar 

  10. Roeb, M., Sattler, Ch. (2013): Thermochemical reactions for solar energy storage and fuel production. In Eurotherm seminar 98, Vienna.

    Google Scholar 

  11. Schwaiger, K., Haider, M. (2013): Applications of sandTES active fluidization in CSP. In Eurotherm 98 seminar, Vienna.

    Google Scholar 

  12. Stahl, K., Zunft, S., Kessler, S., Siebert, M. (2012): Entwicklung eines Hochtemperatur-Wärmespeichers zur Flexibilisierung von GuD-Kraftwerken. KWTK Dresden.

  13. Stöver, B., Rehfeldt, S., Alekseev, A., Stiller, Ch. (2013): Process engineering and thermodynamic evaluation of concepts for liquid air energy storage. Vienna: Power Gen.

    Google Scholar 

  14. Ullmann, U., Tamme, R., Bauer, T., Hahne, E. (2013): Heat storage media. Ullmann encyclopedia of chemical engineers.

    Google Scholar 

  15. van Essen, V. M., et al. (2009): Characterization of salt hydrates for compact seasonal thermochemical storage. In Proceedings of ES2009, San Francisco, California, USA. New York: ASME (pp. 1–7).

    Google Scholar 

  16. Yu, Y. Q., Zhang, P., Wu, J. Y., Wang, R. Z. (2008): Energy upgrading by solid-gas reaction heat transformer: a critical review. Renew. Sustain. Energy Rev., 12, 1302–1324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Haider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haider, M., Werner, A. An overview of state of the art and research in the fields of sensible, latent and thermo-chemical thermal energy storage. Elektrotech. Inftech. 130, 153–160 (2013). https://doi.org/10.1007/s00502-013-0151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-013-0151-3

Keywords

Schlüsselwörter