Abstract
This paper is addressed to problems arising in the dynamics of business administration and power systems which are characterized by dead-time delay and which make the problems more difficult, especially if power generation is highly variable. Overshoot and undershoot reactions should be avoided as far as possible. The classical problem is outlined and the methods of predictors and model predictive control are carried out. Special interest is put on accessing the robustness with sensitivity analysis methods, on keeping an eye on maintaining optimal transients including the application of selected gradients.
Zusammenfassung
Der Aufsatz behandelt Probleme des Bestandsmanagements im Bereich der Geschäftsabwicklung und bei Energiesystemen. Durch die totzeitbedingten Verzögerungen werden die Aufgaben komplexer, insbesondere bei volatiler Energieumsetzung. Über- und Unterschwingen sollten soweit wie möglich unterbunden werden. Die klassischen Probleme und die Methoden der Vorhersage werden abgehandelt, ebenso die Regelung mit modellbasierter Vorhersage. Besondere Aufmerksamkeit wird auf die Robustheits- und Sensitivitätsmethoden gelegt, um mit ausgewählten Gradienten optimale Transienten zu erhalten.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adamy, J. (2009): Nichtlineare Regelungen. Berlin: Springer.
Alessandri, A., Gaggero, M., Tonelli, F. (2011): Min-max and predictive control for the management of distribution in supply chains. IEEE Trans. Control Syst. Technol., 19, 1075–1089.
Appleby, R. C. (1994): Modern business administration. Financal Times Management.
Balance Sheet sample of a typical trading company: Wal-Mart in Jan 31, 2006: Source. http://www.edgar-online.com.
Bordeneuve-Guibé, J., Vaucoret, C. (2001): Robust multivariable predictive control. IEEE Control Syst. Mag., 21(2), 54–65.
Brauner, G. (2011): Nachhaltige Energieversorgung - Herausforderungen und Lösungsmöglichkeiten. E&I, Elektrotech. Inf.tech., 128, 302–303.
Camacho, E. F., Bordons, C. (1999): Model predictive control. London: Springer. (2007)
Cao, C. T. (1989): Entwurf eines robusten prädiktiven Reglers für totzeitbehaftete Regelsysteme. Automatisierungstechnik, 37, 104–110.
Carlberg, C. (2007): Business analysis with Microsoft excel. 3rd ed. Indianapolis: Que (Pearson).
Clarke, D. W., Mohtadi, C., Tuffs, P. S. (1987): Generalized predictive control. Automatica, 23, 137–160.
Demircioglu, H., Karasu, E. (2000): Generalized predictive control. IEEE Control Syst. Mag., 20(5), 36–47.
Gehrer, W. (2011): Powervision 2040. E&I, Elektrotech. Inf.tech., 128, 306–308.
Halvgaard, R., Poulsen, N. K., Madsen, H., Jorgensen, J. B. (2012): Economic model predictive control for building climate control in a smart grid. In IEEE PES innovative smart grid technologies (pp. 1–6).
Halvgaard, R., Poulsen, N. K., Madsen, H., Jorgensen, J. B., Marra, F., Bondy, D. E. M. (2012): Electric vehicle charge planning using economic model predictive control. In Electric vehicle conference (pp. 1–6).
Hanau, A. (1928): Die Prognose der Schweinepreise. Berlin: Reimar Hobbing.
Harlow, A. A. (1960): The hog cycle and the cobweb theorem. J. Farm Econ., Nov., 842–853.
Hug-Glanzmann, G. (2011): A hybrid approach to balance the variability and intermittency of renewable generation. In IEEE power tech Trondheim (pp. 1–8).
Kaldor, N. (1938): The cobweb theorem. Q. J. Econ., 52, 255–280.
Kotler, P., et al. (2009): Marketing management, international edn. NewYork: Prentice Hall International.
Le, X., Ilic, M.D. (2009): Model predictive economic/environmental dispatch of power systems with intermittent resources. In IEEE power and energy society general meeting (pp. 1–6).
Le, X., Joo, J.-Y., Ilic, M.D. (2009): Integration of intermittent resources with price-responsive loads. In North American power symposium (pp. 1–6).
Maciejowski, J. M. (2002): Predictive control with constraints. Upper Saddle River: Pearson.
Mattingley, J., Wang, Y., Boyd, S. (2011): Receding horizon control, automatic generation of high-speed solvers. IEEE Control Syst. Mag., 31(3), 52–65.
Mayhorn, E., Kalsi, K., Elizondo, M., Zhang, W., Lu, S., Samaan, N., Butler-Purry, K. (2012): Optimal control of distributed energy resources using model predictive control. In Power and energy society general meeting (pp. 1–8).
Monden, Y. (1998): Toyota production system: an integrated approach to just-in-time. 3rd edn. Edited by Inst. of Industrial Engineers.
Muller, M. (2003): Essentials of inventory management. New York: McGraw-Hill Professional.
Nandola, N. N., Rivera, D. E. (2013): An improved formulation of hybrid model predictive control with application to production-inventory systems. IEEE Trans. Control Syst. Technol., 21, 121–135.
Özer, O. (2003): Replenishment strategies for distribution systems under advance demand information. Manag. Sci., 49(3), 255–272.
Palmor, Z. J., Halevi, Y. (1990): Robustness properties of sampled-data systems with dead time compensators. Automatica, 26, 637–640.
Rawlings, J. B. (2000): Tutorial overview of model predictive control. IEEE Control Syst. Mag., 20(3), 38–52.
Smith, O. J. M. (1957): Closer control of loops with dead time. Chem. Eng. Prog., 53, 217–219.
Wang, L. (2009): Model predictive control system design and implementation in MATLAB. London: Springer.
Wang, T., Toktay, B. (2008): Inventory management with advance demand information and flexible delivery. Manag. Sci., 54(4), 716–732.
Wei, Q., Liu, J., Christofides, P. D. (2013): Distributed supervisory predictive control of distributed wind and solar energy systems. IEEE Trans. Control Syst. Technol., 21, 504–512.
Weinmann, A. (2003): Multi-Lagrange-multiplier problems: desensitized pole assignment with minimal controller matrix norm for networked control systems and constraints in high-order mechatronics. Math. Comput. Model. Dyn. Syst., 9, 345–362. Swets & Zeitlinger Publishers.
Weinmann, A. (2010): Robustification of control systems under uncertainty proportion. E&I, Elektrotech. Inf.tech., 127, 269–273.
www.economia48.com. Die große Enzyklopädie der Wirtschaft.
www.economics.phil.uni-erlangen.de. Optimale Lagerwirtschaft.
Wirtschaftslexikon.gabler.at. wikipedia.at ‘Lagerbestand’.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Weinmann, A., Vöhr, G. The robustness of inventory levels and power support in business and energy grid administration. Elektrotech. Inftech. 130, 230–237 (2013). https://doi.org/10.1007/s00502-013-0159-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-013-0159-8
Keywords
- dead-time delay
- variable power generation and customer demand
- sensitivity
- robustness
- model predictive control