Skip to main content

Advertisement

Log in

Maximizing local renewable energy consumption by shifting flexible electrical loads in time and space

  • CIGRE 2014
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Worldwide efforts facing global climate change issues and the rise of renewable energy sources are leading to significant changes in the energy sector. G[e]oGreen is a SmartGrids ERA-NET project that aims at bringing another approach to energy balance and overall power system stability. The unpredictable nature of renewable energy sources leads to power peaks in the distribution network which are correlated in time and space and therefore within regions load conditions on the grid will vary. One approach to cope with these fluctuations is the massive deployment of energy storage systems but also the temporal and spatial shifting of energy consumption is possible but not widely used at the moment. Introducing a cell concept of mobile consumers, it considers consumption mobility both in terms of time and space. In particular, electric vehicles and Data Centers’ (DC) processing tasks, as typical cases of mobile consumers and their impact on the power grid, improved energy usage efficiency, grid stability and peak shaving are considered.

First simulations of the 18 G[e]oGreen cells and the described use-case were performed. The aim was to simulate electric vehicles in uncontrolled charging mode and to analyse the developed use-case within applicability for the optimization algorithm.

The analysis of uncontrolled charging of EVs show that 67 % of all EVs arrive at their charging point with state-of-charges (SOCs) above 80 % and another 25 % of vehicles have SOCs between 50 and 80 %, which leads to a considerable potential for controlled charging and optimization strategies.

The developed use-case features sufficient imbalance in generation and consumption of electrical power as well in time and geographical terms. This is the essential basis for the ongoing development of the optimization algorithm. Along with this and the described simulation environment, which allows full control of simulated consumers, further development and research on optimization algorithms for load shifting in time as well as geographical terms can be done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. This represents the Mennekes 32A charging standard. EVs always charge with the highest possible power and are either limited by their on-board charger or the maximum charging power allowed by the charging pole.

References

  1. Geogreen—project website [online]. Access: https://esites.vito.be/sites/geogreen/Pages/home.aspx.

  2. Welcome to SmartGrids ERA-Net | SmartGrids ERA-Net [online]. Access: http://www.eranet-smartgrids.eu/.

  3. Geogreen—Geogreen system concept [online]. Access: https://esites.vito.be/sites/geogreen/systemconcept/Pages/systemconcept.aspx.

  4. PowerFactory—DIgSILENT Germany [online]. Access: http://www.digsilent.de/index.php/products-powerfactory.html.

  5. Stifter, M., Übermasser, S. (2013): Dynamic simulation of power systems interaction with large electric vehicle fleet activities. In PowerTech. IEEE Power & Energy Society. doi:10.1109/PTC.2013.6652309.

  6. OPC server from MatrikonOPC—Modbus and 500 OPC servers and products [online]. Access: http://www.matrikonopc.com/.

  7. Agent-based transport simulations | MATSim [online]. Access: http://www.matsim.org/.

  8. Übermasser, S., Stifter, M. (2013): A multi-agent based approach for simulating G2V and V2G charging strategies for large electric vehicle fleets. In 22nd international conference and exhibition on electricity distribution (CIRED 2013). doi:10.1049/cp.2013.0959.

    Google Scholar 

  9. Burnier de Castro, D., Übermasser, S., Henein, S., Stifter, M., Stöckl, J., Höglinger, S. (2013): Dynamic co-simulation of agent-based controlled electric vehicles and their impacts on low-voltage networks.

  10. STATISTIK AUSTRIA—Volkszählungen, Registerzählung [online]. Access: http://www.statistik.at/web_de/statistiken/bevoelkerung/volkszaehlungen_registerzaehlungen/index.html.

  11. STATISTIK AUSTRIA—Bestand an Gebäuden und Wohnungen [online]. Access: http://www.statistik.at/web_de/statistiken/wohnen_und_gebaeude/bestand_an_gebaeuden_und_wohnungen/.

  12. OÖ (2001): Verkehrserhebung 2001 Ergebnisse des Bundeslandes. Linz: Amt der OÖ Landesregierung Abteilung Verkehrstechnik/Verkehrskoordinierung.

    Google Scholar 

  13. Energie AG Oberösterreich—Kraftwerke [online]. Access: http://www.energieag.at/eag_at/page/339536979223644121_593479839214310582_593479839214310582.de.html.

  14. Linz AG—Kraftwerke [online]. Access: https://www.linzag.at/portal/portal/linzag/linzag/linzstrom/kraftwerke/centerWindow;jsessionid=94970AA5C090774EDA24958069409441.node2?plaginit=1&action=1.

  15. Liste österreichischer Kraftwerke—Wikipedia [online]. Access: http://de.wikipedia.org/wiki/Liste_%C3%B6sterreichischer_Kraftwerke.

  16. Land Oberösterreich—Windkraft in Oberösterreich hat Tradition [online]. Access: http://www.land-oberoesterreich.gv.at/cps/rde/xchg/ooe/hs.xsl/110638_DEU_HTML.htm.

  17. Land Oberösterreich—Windkraftmasterplan Oberösterreich [online]. Access: http://www.land-oberoesterreich.gv.at/cps/rde/xchg/ooe/hs.xsl/110625_DEU_HTML.htm.

  18. STATISTIK AUSTRIA—Kraftfahrzeuge—Bestand [online]. Access: http://www.statistik.at/web_de/statistiken/verkehr/strasse/kraftfahrzeuge_-_bestand/index.html.

  19. OEMAG—Winderzeugung in den Jahren 2003 bis 2011 [online]. Access: http://www.oem-ag.at/de/oekostrom/statistik/winderzeugung.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Übermasser.

Additional information

Paper submitted for the CIGRE Session 2014, SC C6, Paris, France, August 24–29, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Übermasser, S., Leber, T., Stifter, M. et al. Maximizing local renewable energy consumption by shifting flexible electrical loads in time and space. Elektrotech. Inftech. 131, 372–377 (2014). https://doi.org/10.1007/s00502-014-0256-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-014-0256-3

Keywords

Navigation