Skip to main content
Log in

Intelligent plaster for accurate body temperature monitoring and investigations regarding EMI using near-field magnetic scan

Intelligentes Pflaster für die genaue Überwachung der Körpertemperatur und Untersuchungen bezüglich elektromagnetischer Störungen unter Verwendung eines Nahfeld-Magnet-Scanners

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

A wireless self-sufficient human body temperature monitoring system was designed using a 130 nm CMOS standard process. This miniaturized sensor grain enables significant cost advantages and impresses with its high level of integration. The RFID communication protocol ensures compatibility with state-of-the-art smart phones and tablets, thus facilitating point-of-care as well as end-user utilization. The biocompatible plaster enables cyclic measurements and also storage of the obtained data. In the range of 35 °C to 42 °C a \(\pm3\sigma\) accuracy of ±0.4 °C can be achieved. The system is powered by a lithium based micro battery, which can be recharged wirelessly by any state-of-the-art near field communication device. Measurement data and monitoring history can be displayed via an Android™ software application on a commercial NFC compatible smartphone. The configuration and calibration data as well as the measurement results are stored in the integrated EEPROM. The main advantage of this system appliance is, that it can be easily used within the scope of medical attendance as well as home health care. For the save usage in hospitals additional investigations regarding Electromagnetic Interference using Near-Field Magnetic Scan were performed.

Zusammenfassung

Ein drahtloses Temperaturüberwachungssystem wurde in einem 130 nm Standard-CMOS-Prozess realisiert. Dieser miniaturisierte Sensorchip punktet durch erhebliche Kostenvorteile und beeindruckt durch seinen hohen Integrationsgrad. Das verwendete RFID-Kommunikationsprotokoll garantiert die Kompatibilität mit modernsten Smartphones und Tablets, was die Vor-Ort-Diagnose als auch die Verwendung durch den Privatanwender erleichtert. Das biokompatible Pflaster ermöglicht zyklische Messungen sowie die Speicherung der gewonnenen Daten. Im Bereich von 35 °C bis 42 °C kann eine ±3-Sigma-Genauigkeit von ±0.4 °C erreicht werden. Das System wird durch einen Mikro-Lithium-Akku versorgt, welcher kabellos durch jedes kommerziell erhältliche Nahfeldkommunikationsgerät aufgeladen werden kann. Die Messdaten und der Temperaturverlauf können mit einer Android™-Software-Applikation abgerufen und dargestellt werden. Die Konfigurations- und Kalibrierdaten werden im integrierten EEPROM gespeichert. Der Vorteil dieser Applikation ist die einfache Handhabung im Rahmen der ärztlichen Betreuung als auch in der häuslichen Krankenpflege. Zusätzlich wurden – für die bedenkenlose Verwendung in Krankenhäusern – Untersuchungen bezüglich elektromagnetischer Störausstrahlungen durchgeführt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. Vahey, D. C., Aiken, L. H., Sloane, D. M., Clarke, S. P., Vargas, D. (2004): Nurse burnout and patient satisfaction. Med. Care, 42(2 Suppl), II57. doi:10.1097/01.mlr.0000109126.50398.5a.

    Google Scholar 

  2. Opasjumruskit, K., Thanthipwan, T., Sathusen, O., Sirinamarattana, P., Gadmanee, P., Pootarapan, E., Wongkomet, N., Thanachayanont, A., Thamsirianunt, M. (2006): Self-powered wireless temperature sensors exploit RFID technology. IEEE Pervasive Comput., 5(1), 54–61. doi:10.1109/MPRV.2006.15.

    Article  Google Scholar 

  3. Shen, H., Li, L., Zhou, Y. (2007): Fully integrated passive UHF RFID tag with temperature sensor for environment monitoring. In 7th international conference on ASIC, 2007. ASICON ’07 (pp. 360–363). doi:10.1109/ICASIC.2007.4415641.

    Chapter  Google Scholar 

  4. Cecil, S., Bammer, M., Schmid, G., Lamedschwandner, K., Oberleitner, A. (2013): Smart NFC-sensors for healthcare applications and further development trends. E&I, Elektrotech. Inf.tech., 130(7), 191–200. doi:10.1007/s00502-013-0156-y.

    Article  Google Scholar 

  5. Steffan, C. (2013): Konzeption und Entwurf einer integrierten DC/DC Spannungsregelung für On-Chip Ladeschaltungen. Master’s thesis, Graz University of Technology.

  6. Wiessflecker, M., Hofer, G., Holweg, G., Reinisch, H., Pribyl, W. (2012): A sub 1 V self clocked switched capacitor bandgap reference with a current consumption of 180 nA. In IEEE international symposium on circuits and systems. ISCAS (pp. 2841–2844). doi:10.1109/ISCAS.2012.6271903.

    Google Scholar 

  7. Wiessflecker, M. (2013): Design of a generic low voltage, ultra-low power sensor interface for wirelessly powered ICs. PhD thesis, Graz University of Technology.

  8. Cavallini, A., Jost, T., Ghoreishizadeh, S., Olivo, J., de Beeck, M., Gorissen, B., Grassi, F., De Micheli, G., Carrara, S. (2015): A subcutaneous biochip for remote monitoring of human metabolism: packaging and biocompatibility assessment. IEEE Sens. J., 15(1), 417–424. doi:10.1109/JSEN.2014.2339638.

    Article  Google Scholar 

  9. Solbrekken, G., Chiu, C.-p (1998): Single temperature calibration method for die level temperature sensors. In The 6th intersociety conference on thermal and thermomechanical phenomena in electronic systems. ITHERM ’98 (pp. 88–95). doi:10.1109/ITHERM.1998.689524.

    Google Scholar 

  10. DIN EN ISO 80601-2-56 2009 (2009): Medical electrical equipment, part 2: 56 particular requirements for basic safety and essential performance of clinical thermometers for body temperature measurement.

  11. IEC EN 60601-1-2 (2007): Medical electrical equipment, part 1: general requirements for safety.; part 2: collateral standard: electromagnetic compatibility, requirements and tests.

  12. Council Directive (1993): Medical devices directive 93/42/EEC (as amended by directive 2007/47/EC). Modified by directive 2007/47, 2007.

  13. Lamedschwandner, K., Preineder, H. (2011): EMV Betrachtung von Nahbereichsfunksystemen. In 9. EMV Fachtagung. OVE Schriftenreihe (Vol. 60, pp. 114–136).

    Google Scholar 

  14. ECC (2015): ERC recommendation 70-03 relating to the use of Short Range Devices (SRD).

Download references

Acknowledgements

The authors would like to thank Dr. Kurt Lamedschwandner and Ing. Hans Preineder from Seibersdorf Labor GmbH for their valuable inputs regarding the near and far field considerations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Kollegger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kollegger, C., Steffan, C., Greiner, P. et al. Intelligent plaster for accurate body temperature monitoring and investigations regarding EMI using near-field magnetic scan. Elektrotech. Inftech. 133, 25–31 (2016). https://doi.org/10.1007/s00502-015-0381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-015-0381-7

Keywords

Schlüsselwörter

Navigation