Skip to main content
Log in

HF/UHF dual band RFID transponders for an information-driven public transportation system

HF/UHF Dualband-RFID-Transponder für ein informationszentriertes, öffentliches Verkehrssystem

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

The limited communication range of HF radio frequency identification (RFID) smart cards does not allow to automatically assess the alighting point of passengers on public transportation. This work considers HF/UHF dual band RFID transponders for electronic ticketing in an information-driven public transportation system. The UHF RFID interface is intended to enable a remote detection of passengers inside a vehicle and thus to assess the alighting point of passengers. A review of the specific operating conditions for the UHF RFID link is given and associated privacy issues are addressed. We introduce a low-complexity approach to safeguard the privacy of passengers. Following a discussion of the architecture of appropriate HF/UHF dual band transponder ICs, the focus is set on questions of the circuit implementation. With regard to the progressing CMOS technology scaling, we can observe potential risks of overvoltage stress for the UHF RFID front-end at high input powers. Two RF voltage limiters that prevent overvoltages are presented. Experimental results of circuit prototypes in a 40 nm CMOS technology demonstrate the functionality of two UHF RFID front-ends that incorporate the RF voltage limiters.

Zusammenfassung

Die begrenzte Kommunikationsreichweite von kontaktlosen Chipkarten, basierend auf HF Radiofrequenz-Identifikations-Technologie (RFID), erlaubt es nicht, automatisch den Ausstiegspunkt von Passagieren in öffentlichen Verkehrsmitteln festzustellen. Diese Arbeit behandelt HF/UHF Dualband-RFID-Transponder für ein elektronisches Zahlungssystem in einem informationszentrierten, öffentlichen Verkehrssystem. Die UHF RFID-Schnittstelle ist vorgesehen, um eine Ferndetektion von Passagieren innerhalb von Verkehrsmitteln zu ermöglichen und damit den Ausstiegspunkt von Passagieren zu ermitteln. Die spezifischen Einsatzbedingungen des UHF RFID-Links und die damit zusammenhängenden Fragen der Privatsphäre werden untersucht. Wir stellen eine einfache Methode zum Schutz der Privatsphäre von Passagieren vor. Im Anschluss an eine Diskussion der Architektur entsprechender Dualband-Transponder-ICs werden Fragen der Schaltungsumsetzung behandelt. Im Hinblick auf die fortschreitende Skalierung von CMOS-Prozessen können wir mögliche Risiken im Zusammenhang mit Überspannungen am UHF RFID-Frontend, bei hohen Eingangsleistungen, feststellen. Wir führen zwei RF Spannungsbegrenzer ein, zur Vermeidung von Überspannungen. Anhand von Messergebnissen von Schaltungsprototypen in einer 40 nm CMOS-Technologie demonstrieren wir die Funktionalität von zwei UHF RFID-Frontends, welche die beiden RF Spannungsbegrenzer inkludieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

References

  1. Pelletier, M. P., Trépanier, M., Morency, C. (2011): Smart card data use in public transit: a literature review. Transp. Res., Part C, Emerg. Technol., 19(4), 557–568.

    Article  Google Scholar 

  2. Finkenzeller, K. (2010): RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. 3rd ed. Chichester: Wiley.

    Book  Google Scholar 

  3. ISO/IEC (2010): ISO/IEC 14443-2:2010—identification cards—contactless integrated circuit cards—proximity cards, part 2: radio frequency power and signal interface.

  4. Oberli, C., Torres-Torriti, M., Landau, D. (2010): Performance evaluation of UHF RFID technologies for real-time passenger recognition in intelligent public transportation systems. IEEE Trans. Intell. Transp. Syst., 11(3), 748–753.

    Article  Google Scholar 

  5. GS1 EPCglobal (2013): EPC radio-frequency identity protocols generation-2 UHF RFID, specification for RFID air interface protocol for communications at 860 MHz–960 MHz, version 2.0.0 ratified.

  6. ISO/IEC (2012): ISO/IEC 29167-1:2012—information technology—automatic identification and data capture techniques, part 1: air interface for security services and file management for RFID architecture

  7. NXP Semiconductors (2015): NXP UCODE DNA tag IC: a breakthrough in UHF security, product leaflet. http://www.nxp.com. Accessed 7 Dec. 2015.

  8. Ertl, J., Plos, T., Feldhofer, M., Felber, N., Henzen, L. (2013): A security-enhanced UHF RFID tag chip. In 2013 Euromicro conf. on digital system design, DSD, Los Alamitos, 4–6 Sept. 2013.

    Google Scholar 

  9. Zöscher, L., Grosinger, J., Spreitzer, R., Mühlmann, U., Gross, H., Bösch, W. (2015): Concept for a security aware automatic fare collection system using HF/UHF dual band RFID transponders. In 2015 45th European solid state device research conf., ESSDERC, Graz, 14–18 Sept. 2015.

    Google Scholar 

  10. ISO/IEC (2006): ISO/IEC 15693-2:2006—identification cards—contactless integrated circuit cards—vicinity cards, part 2: air interface and initialization.

  11. GS1 EPCglobal (2011): EPC radio-frequency identity protocols EPC class-1 HF RFID air interface protocol for communications at 13.56 MHz, Version 2.0.3.

  12. Missoni, A., Klapf, C., Pribyl, W., Guenter, H., Holweg, G. (2008): A triple-band passive RFID tag. In 2008 IEEE int. solid-state circuits conf. dig. tech. papers, ISSCC, San Francisco, 3–7 Feb. 2008.

    Google Scholar 

  13. Reinisch, H., Hofer, G., Gruber, S., Klamminger, M., Pribyl, W., Holweg, G. (2011): A fully EPC compatible multi frequency passive RFID tag with −11.4 dBm sensitivity. In 2011 IEEE int. conf. on RFID-technologies and applications, RFID-TA, Sitges, 15–16 Sept. 2011.

    Google Scholar 

  14. Essel, J., Brenk, D., Heidrich, J., Weigel, R., Hofer, G., Holweg, G. (2010): A low-power multi-standard frontend for wireless sensor networks. In 2010 IEEE sensors, Kona, 1–4 Nov. 2010.

    Google Scholar 

  15. Reinisch, H., Wiessflecker, M., Gruber, S., Unterassinger, H., Hofer, G., Klamminger, M., Pribyl, W., Holweg, G. (2011): A multifrequency passive sensing tag with on-chip temperature sensor and off-chip sensor interface using EPC HF and UHF RFID technology. IEEE J. Solid-State Circuits, 46(12), 3075–3088.

    Article  Google Scholar 

  16. EM Microelectronic (2014) EM4423: DUAL frequency NFC type 2 & EPC GEN2V2 transponder IC, fact sheet. http://www.emmicroelectronic.com. Accessed 7 Dec. 2015.

  17. Dobkin, D. M. (2012): The RF in RFID: UHF RFID in practice. 2nd ed. Kidlington: Newnes.

    Google Scholar 

  18. Nikitin, P. V., Rao, K. V. S., Martinez, R., Lam, S. F. (2009): Sensitivity and impedance measurements of UHF RFID chips. IEEE Trans. Microw. Theory Tech., 57(5), 1297–1302.

    Article  Google Scholar 

  19. Deleruyelle, T., Pannier, P., Egels, M., Bergeret, E. (2010): Dual band mono-chip HF-UHF tag antenna. In 2010 IEEE antennas and propagation society int. symp., APSURSI, Toronto, 11–17 July 2010.

    Google Scholar 

  20. Kellomaki, T., Ukkonen, L. (2010): Design approaches for bodyworn RFID tags. In 2010 3rd int. symp. on applied sciences in biomedical and communication technologies, ISABEL, Rome, 7–10 Nov. 2010.

    Google Scholar 

  21. Grosinger, J., Scholtz, A. L. (2011): Antennas and wave propagation in novel wireless sensing applications based on passive UHF RFID. E&I, Elektrotech. Inf.tech., 128(11), 408–414.

    Article  Google Scholar 

  22. Groß, H., Wenger, E., Martin, H., Hutter, M. (2014): PIONEER—a prototype for the Internet of things based on an extendable EPC Gen2 RFID tag. In 2014 workshop on RFID security, RFIDsec, Oxford, 21–23 July 2014.

    Google Scholar 

  23. Groß, H., Hölbl, M., Slamanig, D., Spreitzer, R. (2015): Privacy-aware authentication in the internet of things. In 2015 14th int. conf. on cryptology and network security, CANS, Marrakesh, 10–12 Dec. 2015.

    Google Scholar 

  24. NXP Semiconductors (2010): MIFARE DESFire EV1 contactless multi-application IC, product short data sheet, rev. 3.1. http://www.nxp.com. Accessed 10 Dec. 2015.

  25. Lee, J. W., Vo, D. H. T., Huynh, Q. H., Hong, S. H. (2011): A fully integrated HF-band passive RFID tag IC using 0.18 μm CMOS technology for low-cost security applications. IEEE Trans. Ind. Electron., 58(6), 2531–2540.

    Article  Google Scholar 

  26. Yeager, D., Zhang, F., Zarrasvand, A., George, N. T., Daniel, T., Otis, B. P. (2010): A 9 μa, addressable Gen2 sensor tag for biosignal acquisition. IEEE J. Solid-State Circuits, 45(10), 2198–2209.

    Article  Google Scholar 

  27. Ricci, A., Grisanti, M., De Munari, I., Ciampolini, P. (2008): Design of a 2 μw RFID baseband processor featuring an AES cryptography primitive. In 15th IEEE int. conf. on electronics, circuits and syst., ICECS, St. Julien’s, 31 Aug.–3 Sept. 2008.

    Google Scholar 

  28. Kamel, D., Standaert, O.-X., Flandre, D. (2009): Scaling trends of the AES S-box low power consumption in 130 and 65 nm CMOS technology nodes. In IEEE int. symp. on circuits and syst., ISCAS, Taipei, 24–27 May 2009.

    Google Scholar 

  29. Lee, H., Kim, J., Ha, D., Kim, T., Kim, S. (2015): Differentiating ASK demodulator for contactless smart cards supporting VHBR. IEEE Trans. Circuits Syst. II, Express Briefs, 62(7), 641–645.

    Article  MathSciNet  Google Scholar 

  30. Kapoor, A., Groot, C., Pique, G. V., Fatemi, H., Echeverri, J., Sevat, L., Vertregt, M., Meijer, M., Sharma, V., Pu, Y., de Gyvez, J.P. (2014): Digital systems power management for high performance mixed signal platforms. IEEE Trans. Circuits Syst. I, Regul. Pap., 61(4), 961–975.

    Article  Google Scholar 

  31. Alioto, M. (2012): Ultra-low power VLSI circuit design demystified and explained: a tutorial. IEEE Trans. Circuits Syst. I, Regul. Pap., 1(59), 3–29.

    Article  MathSciNet  Google Scholar 

  32. Ricci, A., Grisanti, M., De Munari, I., Ciampolini, P. (2009): Improved pervasive sensing with RFID: an ultra-low power baseband processor for UHF tags. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 17(12), 1719–1729.

    Article  Google Scholar 

  33. Gebhart, M. (2011): Analytical considerations for an ISO/IEC14443 compliant SmartCard transponder. In Proc. of the 2011 11th int. conf. on telecommunications, ConTEL, Graz, 15–17 June 2011.

    Google Scholar 

  34. Wobak, M., Gebhart, M., Mühlmann, U. (2012): Physical limits of batteryless HF RFID transponders defined by system properties. In 2012 IEEE int. conf. on RFID-technologies and applications, RFID-TA, Nice, 5–7 Nov. 2012.

    Google Scholar 

  35. Balachandran, G. K., Barnett, R. E. (2010): A passive UHF RFID demodulator with RF overvoltage protection and automatic weighted threshold adjustment. IEEE Trans. Circuits Syst. I, Regul. Pap., 57(9), 2291–2300.

    Article  MathSciNet  Google Scholar 

  36. Facen, A., Boni, A. (2006): A CMOS analog frontend for a passive UHF RFID tag. In Proc. of the 2006 int. symp. on low power electronics and design, ISLPED, Tegernsee, 4–6 Oct. 2006.

    Google Scholar 

  37. Zöscher, L., Grosinger, J., Mühlmann, U., Watzinger, H., Bösch, W. (2015): RF voltage limiters for passive differential UHF RFID front-ends in a 40 nm CMOS technology. In 2015 IEEE MTT-s int. microwave symp. IMS, Phoenix, 17–22 May 2015.

    Google Scholar 

  38. Kotani, K., Sasaki, A., Ito, T. (2009): High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE J. Solid-State Circuits, 44(11), 3011–3018.

    Article  Google Scholar 

  39. Mandal, S., Sarpeshkar, R. (2007): Low-power CMOS rectifier design for RFID applications. IEEE Trans. Circuits Syst. I, Regul. Pap., 54(6), 1177–1188.

    Article  Google Scholar 

  40. Bakhtiar, A. S., Jalali, M. S., Mirabbasi, S. (2010): A high-efficiency CMOS rectifier for low-power RFID tags. In 2010 IEEE int. conf. on RFID 83(88), Orlando, 14–16 April 2010.

    Google Scholar 

  41. Bergler, E., Brandl, R., Spindler, R., Entner, R. (2013): Sub-stage for a charge pump. U.S. patent 8,362,825, 29 Jan. 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Zöscher.

Additional information

This work was performed as part of the K-project “Secure Contactless Sphere — Smart RFID Technologies for a Connected World” that has been funded by the Austrian Research Promotion Agency (FFG).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zöscher, L., Spreitzer, R., Gross, H. et al. HF/UHF dual band RFID transponders for an information-driven public transportation system. Elektrotech. Inftech. 133, 163–175 (2016). https://doi.org/10.1007/s00502-016-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-016-0405-y

Keywords

Schlüsselwörter

Navigation