Skip to main content
Log in

Skill-based learning of an assembly process

Skill-basiertes Lernen für Montageprozesse

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

In an era of transformation in manufacturing demographics from mass production to mass customization, advances on human-robot interaction in industries have taken many forms. However, the aim of reducing the amount of programming required by an expert using natural modes of communication is still an open topic. In this paper, we present a platform and a learning framework for human robot cooperation, called XRob. XRob is based on task-based formalism and allows building applications of human robot interactions in an intuitive way. And it enables the user to pursue different levels of shared autonomy between human and robot. The learning framework showcases that it is able to learn a complicated human robot cooperative assembly process and is intuitive to the user.

Zusammenfassung

Rasch veränderliche Marktsituationen erfordern zunehmend eine Flexibilisierung der industriellen Produktion. Um der Herausforderung hoher Variantenvielfalt gerecht zu werden, gewinnt die Mensch-Roboter-Interaktion in all ihren Formen, aufgrund der Fortschritte in Forschung und Entwicklung, zunehmend an Bedeutung. Allerdings ist das Ziel, den Programmieraufwand – üblicherweise durch einen Experten erledigt – mit Hilfe von natürlichen Kommunikationsmodi zu reduzieren, immer noch ein offenes Thema. In dieser Arbeit stellen die Autoren ein Framework zum Lernen, Parametrieren und Ausführen von Prozessen, basierend auf Mensch-Roboter-Kooperation, vor (XRob). Dieses XRob Framework beruht auf einem aufgabenbasierten Formalismus und ermöglicht es, Anwendungen basierend auf Mensch-Roboter-Interaktion in intuitiver Weise zu implementieren. Mit dieser Plattform ist der Benutzer in der Lage, verschiedene Ebenen der geteilten Autonomie zwischen Mensch und Roboter umzusetzen. Das integrierte Lern-Framework zeigt, dass es in der Lage ist, einen komplizierten, kooperativen Montageprozess zu lernen und intuitiv zu bedienen. Zusätzlich ermöglicht das Framework das Erlernen unterschiedlicher Montageprozesse durch unterschiedliche Benutzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Pedersen, M. R., et al. (2016): Robot skills for manufacturing: from concept to industrial deployment. Robot. Comput.-Integr. Manuf., 37, 282–291.

    Article  Google Scholar 

  2. euRobotics (2013): Robitcs 2020 strategic research agenda for robotics in Europe.

  3. Nicolescu, M. N., et al. (2003): Natural methods for robot task learning: instructive demonstrations, generalization and practice. In Proceedings of the second international joint conference on autonomous agents and multiagent systems.

    Google Scholar 

  4. Finkemeyer, B., Kröger, T., Wahl, F. M. (2005): Executing assembly tasks specified by manipulation primitive nets. Adv. Robot., 19, 591–611.

    Article  Google Scholar 

  5. Bruyninckx, H., De Schutter, J. (1996): Specification of force-controlled actions in the task frame formalism—a synthesis. IEEE Trans. Robot. Autom., 12, 581–589.

    Article  Google Scholar 

  6. Mosemann, H., Wahl, F. M. (2001): Automatic decomposition of planned assembly sequences into skill primitives. IEEE Trans. Robot. Autom., 17, 709–718.

    Article  Google Scholar 

  7. Steinmetz, F., Weitschat, R. (2016): Skill parametrization approaches and skill architecture for human-robot interaction. In 2016 IEEE international conference on automation science and engineering.

    Google Scholar 

  8. Pedersen, M. R., Krüger, V. (2015): Automated planning of industrial logistics on a skill-equipped robot. In IROS 2015 workshop task planning for intelligent robots in service and manufacturing, Hamburg, Germany.

    Google Scholar 

  9. Ko, W. K. H., Wu, Y., Tee, K. P., Buchli, J. (2015): Towards industrial robot learning from demonstration. In Proceedings of the 3rd international conference on human-agent interaction.

    Google Scholar 

  10. Stenmark, M., Topp, E. A. (2016): From demonstrations to skills for high-level programming of industrial robots. In 2016 AAAI fall symposium series.

    Google Scholar 

  11. Huber, A., Weiss, A., Minichberger, J., Ikeda, M. (2016): First application of robot teaching in an existing industry 4.0-environment. Does it really work? Societies.

  12. Pichler, A., Akkaladevi, S. C., et al. (2017): Towards shared autonomy for robotic tasks in manufacturing. In Proc. FAIM 2017, Modena, Italy.

    Google Scholar 

  13. DIN EN ISO 10218-1 (2012): Industrieroboter – Sicherheitsanforderungen – Teil 1: Roboter. Berlin: Beuth.

    Google Scholar 

Download references

Acknowledgements

This work is funded by the projects LERN4MRK (Austrian Ministry for Transport, Innovation and Technology) and AssistMe (FFG, 848653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharath Chandra Akkaladevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaladevi, S.C., Plasch, M. & Pichler, A. Skill-based learning of an assembly process. Elektrotech. Inftech. 134, 312–315 (2017). https://doi.org/10.1007/s00502-017-0514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-017-0514-2

Keywords

Schlüsselwörter

Navigation