Skip to main content
Log in

A comparative survey of power converter topologies for full-size converter operation of medium-voltage hydropower generators

Umrichtertopologien für den Betrieb von umrichtergespeisten Mittelspannungswasserkraftgeneratoren

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

This paper discusses the challenges for today’s power converter topologies when operating large synchronous motor-generators in pumped storage power plants, which is a medium-voltage high-power application. First, the available ratings and characteristics of the utilized power semiconductor switches are analyzed. Then, the practical limitations of classical multilevel voltage source converters are reviewed, particularly the individual maximum achievable operating voltage. Next, the usability of direct AC–AC converters is discussed. Due to their arbitrary scalability and excellent performance, modular multilevel converter topologies gain special attention in this paper. The characteristics of the two main arrangements, the modular multilevel converter and the modular multilevel matrix converter, are examined with respect to the torque-speed characteristic of the installed reversible-speed pump-turbines. A review of commercially available power converters for medium-voltage high-power drive applications and their specifications as well as the identification of promising power converter topologies for operation in large pumped storage power plants complete this comprehensive analysis.

Zusammenfassung

Dieser Beitrag zeigt die Anforderungen an Umrichter für den Betrieb von großen Synchrongeneratoren in Pumpspeicherkraftwerken. Hierbei handelt es sich um eine Mittelspannungshochleistungsanwendung. Zuerst werden die Bemessungsgrößen und Eigenschaften der verwendeten Leistungshalbleiterschalter analysiert. Als nächstes werden die praktischen Einschränkungen von klassischen mehrstufigen Spannungszwischenkreisumrichtern untersucht, wobei den jeweils erreichbaren Betriebsspannungen besondere Aufmerksamkeit geschenkt wird. Auch auf die Verwendbarkeit von direkten AC–AC-Umrichtern wird kurz eingegangen. Aufgrund ihrer beliebigen Skalierbarkeit hin zu hohen Spannungen und ihrer exzellenten Eigenschaften erhalten modulare mehrstufige Umrichter in diesem Beitrag besondere Beachtung. Das Betriebsverhalten der zwei wichtigsten Arrangements, nämlich des Modular Multilevel Converters und des Modular Multilevel Matrix Converters, wird in Hinblick auf das Drehmoment-Drehzahl-Verhalten der installierten Pumpturbinen untersucht. Eine Übersicht über kommerziell erhältliche Umrichter für Mittelspannungshochleistungsanwendungen und deren Spezifikationen sowie eine Analyse von vielversprechenden Umrichtertopologien für den Betrieb in großen Pumpspeicherkraftwerken schließen diesen Beitrag ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Holzer, T., Muetze, A. (2019): Full-size converter operation of hydro power generators: a state-of-the-art review of motivations, solutions, and design implications. E&I, Elektrotech. Inf.tech., 136(2), 209–215.

    Article  Google Scholar 

  2. Andritz Hydro (2014): Neue Chancen fuer Pumpspeicherkraftwerke, Hydro news.

  3. Fraile-Ardanuy, J., Wilhelmi, J. R., Fraile-Mora, J. J., Perez, J. I. (2006): Variable-speed hydro generation: operational aspects and control. IEEE Trans. Energy Convers., 21(2), 569–574.

    Article  Google Scholar 

  4. Schmidt, E., Ertl, J., Preiss, A., Zensch, R., Schuerhuber, R., Hell, J. (2011): Studies about the low voltage ride through capabilities of variable-speed motor-generators of pumped storage hydro power plants. In 21st Australasian universities power engineering conference (AUPEC), Brisbane, QLD, Australia (pp. 1–6).

    Google Scholar 

  5. Hell, J., Egretzberger, M., Lechner, A., Schuerhuber, R., Vaillant, Y. (2012): Full size converter solutions for pumped storage plants – a promising new technology. In Hydro, Bilbao, Spain.

    Google Scholar 

  6. Krug, D., Bernet, S., Fazel, S. S., Jalili, K., Malinowski, M. (2007): Comparison of 2.3-kV medium-voltage multilevel converters for industrial medium-voltage drives. IEEE Trans. Ind. Electron., 54(6), 2979–2992.

    Article  Google Scholar 

  7. Abu-Rub, H., Bayhan, S., Moinoddin, S., Malinowski, M., Guzinski, J. (2016): Medium-voltage drives: challenges and existing technology. IEEE Power Energy Mag., 3(2), 29–41.

    Article  Google Scholar 

  8. Dekka, A., Wu, B., Fuentes, R. L., Perez, M., Zargari, N. R. (2017): Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Top. Power Electron., 5(4), 1631–1656.

    Article  Google Scholar 

  9. Wu, B., Narimani, M. (2017): High-power converters and AC drives. New York: Wiley

    Book  Google Scholar 

  10. Infineon, IGBT-modules [Online], https://www.infineon.com/cms/de/product/power/igbt/igbt-modules/ [Accessed: Aug. 2019].

  11. Mitsubishi Electric (2019): GCT (Gate Commutated Turn-off) Thyristor FGC6000AX-120DS. Datasheet.

  12. ABB Switzerland Ltd. (2012): Asymmetric integrated gate-commutated thyristor 5SHY 42L6500. Datasheet.

  13. ABB Switzerland Ltd. (2013): Asymmetric Integrated Gate-Commutated Thyristor 5SHY 55L4500 Datasheet.

  14. Filsecker, F., Alvarez, R., Bernet, S. (2013): Comparison of 4.5-kV press-pack IGBTs and IGCTs for medium-voltage converters. IEEE Trans. Ind. Electron., 60(2), 440–449.

    Article  Google Scholar 

  15. Du, S., Dekka, A., Wu, B., Zargari, N. (2018): Modular multilevel converters: analysis, control, and applications. New York: Wiley–IEEE Press.

    Google Scholar 

  16. Hossain, J., Mahmud, A. (Eds.) (2014): Large scale renewable power generation. Singapore: Springer.

    Google Scholar 

  17. Rohner, S., Bernet, S., Hiller, M., Sommer, R. (2010): Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans. Ind. Electron., 57(8), 2633–2642.

    Article  Google Scholar 

  18. Islam, M. R., Guo, Y., Zhu, J. (2012): A transformer-less compact and light wind turbine generating system for offshore wind farms. In 2012 IEEE international conference on power and energy (PECon) (pp. 605–610).

    Chapter  Google Scholar 

  19. Benshaw Inc. (2018): M2L 3000 Series, Medium voltage variable frequency drive. Product brochure.

  20. Schlunegger, H. (2014): Pumping efficiency: a 100 MW converter for the Grimsel 2 pumped storage plant. ABB Rev., 2(14), 42–47.

    Google Scholar 

  21. Rodriguez, J., Lai, J.-S., Peng, F. Z. (2002): Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron., 49(4), 724–738.

    Article  Google Scholar 

  22. Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M. A. (2010): A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron., 57(7), 2197–2206.

    Article  Google Scholar 

  23. Dekka, A., Ramezani, A., Ounie, S., Narimani, M. (2019): A new 5–level voltage source inverter. In 2019 IEEE applied power electronics conference and exposition (APEC) (pp. 2511–2515).

    Chapter  Google Scholar 

  24. Xiao, D., Ouni, S., Narimani, M. (2019): A new five-level T-type converter with SPWM for medium-voltage applications. In 2019 IEEE 28th international symposium on industrial electronics (ISIE) (pp. 2015–2020).

    Google Scholar 

  25. Wheeler, P. W., Rodriguez, J., Clare, J. C., Empringham, L., Weinstein, A. (2002): Matrix converters: a technology review. IEEE Trans. Ind. Electron., 49(2), 276–288.

    Article  Google Scholar 

  26. Kolar, J. W., Friedli, T., Rodriguez, J., Wheeler, P. W. (2011): Review of three-phase PWM AC–AC converter topologies. IEEE Trans. Ind. Electron., 58(11), 4988–5006.

    Article  Google Scholar 

  27. Zhang, J., Li, L., Dorrell, D. G. (2018): Control and applications of direct matrix converters: a review. Chin. J. Electr. Eng., 4(2), 18–27.

    Article  Google Scholar 

  28. Allebrod, S., Hamerski, R., Marquardt, R. (2008): New transformerless, scalable modular multilevel converters for HVDC-transmission. In 2008 IEEE power electronics specialists conference (pp. 174–179).

    Chapter  Google Scholar 

  29. Knaak, H. (2011): Modular multilevel converters and HVDC/FACTS: a success story. In Proceedings of the 2011 14th European conference on power electronics and applications (pp. 1–6).

    Google Scholar 

  30. Sau, S., Fernandes, B. G. (2017): Modular multilevel converter based variable speed drives with constant capacitor ripple voltage for wide speed range. In IECON 2017 – 43rd annual conference of the IEEE industrial electronics society (pp. 2073–2078).

    Google Scholar 

  31. Korn, A. J., Winkelnkemper, M., Steimer, P. (2010): Low output frequency operation of the modular multi-level converter. In 2010 IEEE energy conversion congress and exposition (pp. 3993–3997).

    Chapter  Google Scholar 

  32. Hagiwara, M., Hasegawa, I., Akagi, H. (2012): Startup and low-speed operation of an adjustable-speed motor driven by a modular multilevel cascade inverter (MMCI). In 2012 IEEE energy conversion congress and exposition (ECCE) (pp. 718–725).

    Chapter  Google Scholar 

  33. Okazaki, Y., Kawamura, W., Hagiwara, M., Akagi, H., Ishida, T., Tsukakoshi, M., Nakamura, R. (2015): Which is more suitable for MMCC-based medium-voltage motor drives, a DSCC inverter or a TSBC converter? In 2015 9th international conference on power electronics and ECCE, Asia (ICPE–ECCE Asia) (pp. 1053–1060).

    Chapter  Google Scholar 

  34. Vasiladiotis, M., Baumann, R., Haederli, C., Steinke, J. (2018): IGCT-based direct AC/AC modular multilevel converters for pumped hydro storage plants. In 2018 IEEE energy conversion congress and exposition (ECCE) (pp. 4837–4844).

    Chapter  Google Scholar 

  35. Engevik, E. L., Valavi, M., Nysveen, A. (2016): Efficiency and loss calculations in design of converter-fed synchronous hydrogenerators. In XXII international conference on electrical machines (ICEM), Lausanne, Switzerland (pp. 1636–1642).

    Google Scholar 

  36. Holzer, T., Muetze, A. (2018): Full-size converter operation of large hydro power generators: generator design aspects. In 2018 IEEE energy conversion congress and exposition (ECCE) (pp. 7363–7368).

    Chapter  Google Scholar 

  37. Siemens, A. G. (2008): Sinamics GM150 and SM150 medium-voltage drives. Product brochure.

  38. GE (2013): MV7000, Reliable, high performance medium voltage drive. Product brochure.

  39. GE (2015): MV7-Series, Ultimate waverform multi-level high power drive. Product brochure.

  40. Toshiba Mitsubishi-Electric Industrial Systems Corporation (2015): TMdrive – XL85 product application guide. Product brochure.

  41. Siemens AG (2017): Sinamics perfect harmony GH150. Product brochure.

  42. GE (2017): GE’s MV7-5L converter with UWave technology provides compact solution enabling hydroelectric production at the heart of Ottawa, [Online], Available: https://www.gepowerconversion.com/press-releases/ge [Accessed: Aug. 2019].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Holzer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzer, T., Muetze, A. A comparative survey of power converter topologies for full-size converter operation of medium-voltage hydropower generators. Elektrotech. Inftech. 136, 263–270 (2019). https://doi.org/10.1007/s00502-019-00731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-019-00731-6

Keywords

Schlüsselwörter