Skip to main content
Log in

Skill-based programming of complex robotic assembly tasks for industrial application

Skill-basierte Programmierung von komplexen Roboter-Montageaufgaben für die industrielle Applikation

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

In recent years, a paradigm shift is underway as robots leave their typical application field and move into domains that have been untouched by robotic automation. These new kinds of automation systems allow more product variations, smaller life cycles, smaller batch sizes and pave the way from mass production to mass customization. This is due to completely new breed of safe robot technology but also novel ways of setting up new applications like e.g. kinesthetic programming. However, the topic of reducing the programming effort for complex tasks using natural modes of communication is still open. This paper addresses the key developments in this field, shows different ways of programming, and gives relevant use cases in industrial assembly. The technology coverage starts with an online workflow editor called XROB that allows easy-to-use setup of process workflows and related skill parameters. However, in order to reduce the programming effort, a novel way to demonstrate process trajectories by using instrumented hand guided process tools is presented. Finally, the paper gives an overview of a promising approach that allows programming without touching the robot just by demonstrating the process by an expert. The semantic relations between activities executed by the human and robot skills are captured to learn the task sequence of the assembly process. The acquired process knowledge is refined to execute robotic tasks with the help of an interactive graphical user interface (GUI). The system queries the user for feedback, asking for specific information to help the robot complete the task at hand. The given examples show the usability of flexible programming tools in the automation chain and the presented results provide strong evidence of the technological potential in the field.

Zusammenfassung

Die produzierende Industrie erfährt einen Paradigmenwechsel, da Roboter ihr typisches Anwendungsfeld verlassen und in Bereiche vordringen, die von der robotergestützten Automatisierung bisher unberührt geblieben sind. Diese neuartigen Automatisierungssysteme ermöglichen mehr Produktvariationen, kleinere Lebenszyklen und kleinere Losgrößen und ebnen den Weg von der Massenproduktion zur Produktindividualität. Dies ist auf eine völlig neue Art sicherer Robotertechnologie zurückzuführen, aber auch auf neue Wege zur Realisierung neuer Anwendungen wie z.B. der kinästhetischen Programmierung. Ein weiterhin offenes Thema ist den Programmieraufwand für komplexe Aufgaben mit natürlichen Kommunikationswegen zu reduzieren. Diese Publikation befasst sich mit den wichtigsten Entwicklungen in diesem Bereich, zeigt verschiedene Möglichkeiten der Programmierung auf und beschreibt relevante Anwendungsfälle in der industriellen Montage. Das betrachtete Technologieportfolio beinhaltet einen Online-Workflow-Editor namens XRob, welcher die einfache Einrichtung von Prozessabläufen und damit verbundenen Qualifikationsparametern ermöglicht. Um den Programmieraufwand zu reduzieren, wird eine neuartige Möglichkeit zur Demonstration von Prozessverläufen, unter Verwendung von instrumentierten, handgeführten Prozesswerkzeugen, vorgestellt. Schließlich gibt das Paper einen Überblick über einen vielversprechenden Ansatz, der die Programmierung ohne Berührung des Roboters ermöglicht, nur durch die Demonstration des Prozesses durch einen Experten. Die semantische Beziehung zwischen den vom Menschen ausgeführten Tätigkeiten wird erfasst, um die Aufgabenreihenfolge des Montageprozesses zu erlernen. Das erworbene Prozesswissen wird mit Hilfe der interaktiven grafischen Benutzeroberfläche (GUI) zu Roboteraufgaben verfeinert. Das System fragt den Benutzer nach Feedback und fragt nach spezifischen Informationen, die dem Roboter helfen, die anstehende Aufgabe zu erfüllen. Die angeführten Beispiele belegen die Benutzerfreundlichkeit flexibler Programmierwerkzeuge in der Automatisierungskette, und die vorgestellten Ergebnisse zeigen das technologische Potenzial in diesem Bereich auf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Vive.com. (2019). VIVE™ – VIVE Tracker. [online] Available at: https://www.vive.com/eu/vive-tracker [Accessed 10 Aug. 2019].

  2. Ati-ia.com. (2019). ATI Industrial Automation: F/T Sensor Delta. [online] Available at: https://www.ati-ia.com [Accessed 10 Aug. 2019].

  3. KUKA AG. (2019). LBR iiwa – KUKA AG. [online] Available at: https://www.kuka.com/en-at/products/robotics-systems/industrial-robots/lbr-iiwa [Accessed 10 Aug. 2019].

  4. Swi-prolog.org. (2019). [online] Available at: https://www.swi-prolog.org/ [Accessed 10 Aug. 2019].

  5. Medium. (2019). Modeling Data with Hypergraphs. [online] Available at: https://blog.grakn.ai/modelling-data-with-hypergraphs-edff1e12edf0 [Accessed 13 Aug. 2019].

References

  1. Pedersen, M. R., et al. (2016): Robot skills for manufacturing: from concept to industrial deployment. Robot. Comput.-Integr. Manuf., 37, 282–291.

    Article  Google Scholar 

  2. Pichler, A., Akkaladevi, S. C., et al. (2017): Towards shared autonomy for robotic tasks in manufacturing. In Proc. FAIM 2017, Modena, Italy.

    Google Scholar 

  3. Argall, B. D., Chernova, S., Veloso, M., Browning, B. (2009): A survey of robot learning from demonstration. Robot. Auton. Syst., 57(5), 469–483.

    Article  Google Scholar 

  4. Kartoun, U., Stern, H., Edan, Y. (2010): A human-robot collaborative reinforcement learning algorithm. J. Intell. Robot. Syst., 60(2), 217–239.

    Article  Google Scholar 

  5. Ramirez-Amaro, K., Beetz, M., Cheng, G. (2017): Transferring skills to humanoid robots by extracting semantic representations from observations of human activities. Artif. Intell., 247, 95–118.

    Article  MathSciNet  Google Scholar 

  6. Mollard, Y., Munzer, T., Baisero, A., Toussaint, M., Lopes, M. (2015): Robot programming from demonstration, feedback and transfer. In 2015 IEEE/RSJ international conference on intelligent robots and systems, IROS, Hamburg (pp. 1825–1831).

    Google Scholar 

  7. Akkaladevi, S. C., Plasch, M., Maddukuri, S., Eitzinger, C., Pichler, A., Rinner, B. (2018): Toward an interactive reinforcement based learning framework for human robot collaborative assembly processes. Front. Robot. AI 5(126). https://doi.org/10.3389/frobt.2018.00126.

  8. Akkaladevi, S. C., Plasch, M., Eitzinger, C., Pichler, A., Rinner, B. (2018): Towards a context enhanced framework for multi object tracking in human robot collaboration. In IEEE/RSJ international conference on intelligent robots and systems, IROS, Madrid, Spain, October 1–5, 2018 (pp. 8435–8442).

    Google Scholar 

  9. Billard, A., et al. (2008): Robot programming by demonstration. Springer handbook of robotics (pp. 1371–1394). Berlin, Heidelberg: Springer.

    Google Scholar 

  10. Ikeda, M., Maddukuri, S., Hofmann, M., Pichler, A., Zhang, X., Polydoros, A., Neugebauer, U. (2018): FlexRoP-flexible, assistive robots for customized production. In Austrian robotics workshop. (p. 53).

    Google Scholar 

  11. Zhang, X., Polydoros, A. S., Piater, J. (2018): Learning movement assessment primitives for force interaction skills. Preprint arXiv:1805.04354.

  12. Niehorster, D. C., Li, L., Lappe, M. (2017): The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception, 8(3), 2041669517708205.

    Google Scholar 

  13. Analysis of valve’s ‘lighthouse’ tracking system reveals accuracy. 14.02.2019 retrieved from https://www.roadtovr.com/analysis-of-valves-lighthouse-tracking-system-reveals-accuracy/.

  14. Tsai, R. Y., Lenz, R. K. (1989): A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom., 5(3), 345–358.

    Article  Google Scholar 

  15. Park, F. C., Martin, B. J. (1994): Robot sensor calibration: solving AX = XB on the Euclidean group. IEEE Trans. Robot. Autom., 10(5), 717–721.

    Article  Google Scholar 

  16. Akkaladevi, S. C., Plasch, M., Pichler, A., Rinner, B. (2016): Human robot collaboration to reach a common goal in an assembly process. In STAIRS (pp. 3–14).

    Google Scholar 

  17. Ehrlinger, L., Wöß, W. (2016) Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48.

  18. Tenorth, M., Beetz, M. (2017): Representations for robot knowledge in the KnowRob framework. Artif. Intell., 247, 151–169.

    Article  MathSciNet  Google Scholar 

  19. Goertzel, B. (2006): Patterns, hypergraphs and embodied general intelligence. In The 2006 IEEE international joint conference on neural network proceedings (pp. 451–458). New York: IEEE.

    Google Scholar 

  20. Hart, D., Goertzel, B. (2008): Opencog: a software framework for integrative artificial general intelligence. In AGI (pp. 468–472).

    Google Scholar 

  21. Munir, K., Anjum, M. S. (2018): The use of ontologies for effective knowledge modelling and information retrieval. Appl. Comput. Inf., 14(2), 116–126.

    Google Scholar 

  22. Klarman, S. (2017): Modelling data with hypergraphs – a closer look at GRAKN.AI’s hypergraph data model. Retrieved from https://blog.grakn.ai/modelling-data-with-hypergraphs-edff1e12edf0.

  23. GraknAI – A knowledge graph (2019): Retrieved from https://grakn.ai/about.

  24. CANDELOR: A computer vision library for 3D scene interpretation. Retrieved from http://candelor.com.

Download references

Acknowledgements

This research is funded by the projects ASKRob, LERN4MRK_II (Austrian Institute of Technology), MMAssist_II (FFG, 858623), Smart Factory Lab and DigiManu (funded by the State of Upper Austria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharath Chandra Akkaladevi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaladevi, S.C., Pichler, A., Plasch, M. et al. Skill-based programming of complex robotic assembly tasks for industrial application. Elektrotech. Inftech. 136, 326–333 (2019). https://doi.org/10.1007/s00502-019-00741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-019-00741-4

Keywords

Schlüsselwörter

Navigation