Skip to main content
Log in

Integrating FEM and existing traction motor design tools into an everyday engineering environment

Integration von FEM und vorhandenen Designwerkzeugen für Fahrmotoren in eine Designumgebung für den Berechnungsalltag

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

In recent years the permanent magnet synchronous machine has become the state-of-the-art for various traction applications. A fast and accurate analysis methodology, using both the analytical and finite element method, that is suitable for use in an everyday design environment is required. Furthermore, collaboration between different locations and engineering groups mean that existing design tools need to be integrated into an existing tool-chain. A framework architecture that supports distributed system engineering, single component design processes as well as an engineering to order business approach is presented. Special attention is given to the critical sudden terminal short circuit fault condition.

Zusammenfassung

In den letzten Jahren ist die permanent erregte Synchronmaschine Stand der Technik in verschiedenen Traktionsanwendungen geworden. Dafür sind schnelle und genaue Berechnungsmethoden – sowohl analytische als auch Finte Elemente – erforderlich, die für eine Anwendung in der täglichen Arbeit geeignet sind. Um die Zusammenarbeit zwischen verschiedenen Entwicklungsstandorten und Abteilunge weiterhin zu gewährleisten, muss sich das Auslegungsprogramm in die existierende Toollandschaft eingliedern lassen. Es wird eine Arbeitsumgebung vorgestellt, die für arbeitsteilige Systemauslegung, Komponenten- und Auftragsentwicklung geeignet ist. Besonders wird auf den dreipoligen Stoßkurzschluss eingegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Abbreviations

FEM:

Finite element method

MTO:

Manufacturing to order

ETO:

Engineering to order

GUI:

Graphical user interface

MEC:

Magnetic equivalent circuit

FEA:

Finite element analysis

PM:

Permanent magnet

TRV:

Torque per unit rotor volume in \(\mbox{Nm}\,\mbox{m}^{-3}\)

\(l_{\text{Fe}}\) :

Stack length in m

\(m\) :

Number of phases (\(m=3\))

\(p\) :

Number of pole pairs

\(T\) :

Electromagnetic air gap torque in Nm

\(\psi _{\text{pm}}\) :

PM flux linkage in V s

\(N_{\text{s}}\) :

Stator number of series turns

\(R_{\text{1}}\) :

Stator per phase resistance in \(\Omega\)

\(h\) :

Runge-Kutta stepsize

\(t\) :

Time in s

References

  1. IEC 60027-4 Letter symbols to be used in electrical technology. Rotating electric machines.

  2. IEC 60404-8-1 Specifications for individual materials. Magnetically hard materials.

  3. Intens®. https://www.semafor.ch/en/products/intens/. Last checked: 22.10.2018.

  4. Brauer, M., Germishuizen, J., Jöckel, A., Körner, O. (2004): Dynamic short circuits of traction drives: comparison of induction motors with PM synchronous motors. In Proceedings of the international conference on electrical machines.

    Google Scholar 

  5. Germishuizen, J., Kamper, M. (2009): IPM traction machine with single layer non-overlapping concentrated windings. IEEE Trans. Ind. Appl., 45(4), 1387–1394.

    Article  Google Scholar 

  6. Germishuizen, J., Stanton, S., Delafosse, V. (2010): Integrating FEM in an everyday design environment to accurately calculate the performance of IPM motors. Stud. Appl. Electromagn. Mech., 34, 235–243.

    Google Scholar 

  7. Germishuizen, J., Tanner, R. (2018): Calculating the PM motor inductances using the two-dimensional flux linkages. Int. J. Appl. Electromagn. Mech., 57(S1), 107–114.

    Article  Google Scholar 

  8. Germishuizen, J., Tanner, R. (2018): Stepped versus fixed rotor position fea solutions for 2D flux linkage maps in machine design. In Proceedings of the international conference on electrical machines.

    Google Scholar 

  9. Hackbart, M. (2016): Novel approach to calculate electrical currents in stator-, field- and damper-windings at three-phase sudden short-circuit for large synchronous generators. E&I, Elektrotech. Inf.tech., 133(2), 112–120.

    Article  Google Scholar 

  10. Nategh, S., Barber, D., Lindberg, D., Boglietti, A., Aglen, O. (2018): Review and trends in traction motor design: primary and secondary insulation systems. In Proceedings of the international conference on electrical machines.

    Google Scholar 

  11. Nategh, S., Lindberg, D., Brammer, R., Boglietti, A., Aglen, O. (2018): Review and trends in traction motor design: electromagnetic and cooling system layouts. In Proceedings of the international conference on electrical machines.

    Google Scholar 

  12. Neubauer, M., Neudorfer, H. (2016): Optimization of the rotor bridges of permanent magnet generators for the operation with an uncontrolled rectifier. E&I, Elektrotech. Inf.tech., 133, 73–81.

    Article  Google Scholar 

  13. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1992): Numerical recipes in FORTRAN 77. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  14. Wild, S., Neudorfer, H. (2016): Influence of the cooling duct geometry and of radiation and natural convection on the cooling behavior of thermal highly stressed traction induction motors. E&I, Elektrotech. Inf.tech., 133(2), 88–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Germishuizen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germishuizen, J., Adam, C. Integrating FEM and existing traction motor design tools into an everyday engineering environment. Elektrotech. Inftech. 136, 168–174 (2019). https://doi.org/10.1007/s00502-019-0719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-019-0719-7

Keywords

Schlüsselwörter

Navigation