Abstract
For magnetically levitated drives with a 3-phase stator winding, one degree of freedom in the rotor motion can be controlled through a zero-sequence current. For example, an axial active magnetic bearing or a single-phase motor winding can be fed by this zero-sequence current. The zero-sequence current feeding is advantageous due to the saving of power electronic switches. This way, the 4-quadrant chopper can be replaced by connecting the coil to be fed with the star point of the 3-phase winding. The field of application for this principle is limited by non-linearities at high inverter modulation degrees since the maximum possible voltages of the zero-sequence current system and the 3-phase current system are mutually dependent. Therefore, a pulse width modulation is discussed, which prioritizes the 3-phase voltage system over the zero-sequence voltage system, in contrast to a modulation without prioritization. These two methods are evaluated by the maximum possible voltages and the voltage harmonic content. If only one of the two current systems demands high-voltage values, such as in the combination of a magnetic bearing and a motor winding, the zero-sequence current feeding is well-suited.
Zusammenfassung
Bei magnetgelagerten Antrieben mit 3-phasiger Statorwicklung kann ein Freiheitsgrad der Bewegung des Rotors durch einen Nullstrom geregelt werden. Beispielsweise kann ein axiales, aktives Magnetlager, aber auch eine einphasige Wicklung zur Drehmomentgenerierung mit diesem Nullstrom gespeist werden. Die Nullstromspeisung hat ihren Vorteil in der Einsparung von leistungselektronischen Stellelementen. Der sonst benötigte 4-Quadranten-Steller entfällt, indem die zu bestromende Wicklung mit dem Sternpunkt der 3-phasigen Wicklung verbunden wird. Der Einsatzbereich dieses Prinzips ist vor allem durch die Nichtlinearitäten bei hohen Umrichteraussteuergraden begrenzt, da sich dann die stellbaren Spannungen des Nullstromsystems und des Drehstromsystems gegenseitig bedingen. Deshalb wird ein Verfahren diskutiert, bei dem die Spannungen des Drehstromsystems priorisiert gegenüber dem Nullstromsystem gestellt werden, und eines, bei dem keine Priorisierung vorgenommen wird. Beide Verfahren werden mit der Speisung durch einen 4-Quadranten-Steller verglichen. Wird nur in einem der beiden Stromsysteme eine hohe Spannungsamplitude benötigt, etwa in der Kombination aus Magnetlager und Motorwicklung, ist die Nullstromspeisung sehr gut geeignet.
















Similar content being viewed by others
Abbreviations
- \(\varphi _{\mathrm{Z,A}}\)/\(\varphi _{\mathrm{Z,B}}\) :
-
Electric potential of star point ZA/ZB
- \(\tau _{\mathrm{RL,ax}}\) :
-
Axial bearing electric time constant
- \(f_{\mathrm{sw}}\) :
-
Switching frequency
- \(F_{\mathrm{z,N}}\) :
-
Rated axial force
- \(i_{\mathrm{ax}}\)/\(i_{\mathrm{0}}\) :
-
Axial bearing / zero-sequence current
- \(i_{\mathrm{dq,D}}\)/\(i_{\mathrm{dq,L}}\) :
-
\(dq\)-component of drive / suspension current
- \(k\) :
-
Time harmonic order
- \(k_{\mathrm{F,z}}\) :
-
Axial force-current coefficient
- \(L_{\mathrm{ax}}\) :
-
Axial bearing inductance
- \(m_{\mathrm{a}}\) :
-
Amplitude modulation degree
- \(m_{\mathrm{f}}\) :
-
Switching frequency as multiple of the synchronous frequency
- \(m_{\mathrm{R}}\) :
-
Rotor mass
- \(n_{\mathrm{N}}\)/\(n_{\mathrm{max}}\) :
-
Rated / maximum speed
- \(2p\) :
-
Pole count
- \(P_{\mathrm{N}}\) :
-
Rated power
- \(R_{\mathrm{ax}}\) :
-
Axial bearing resistance
- \(t\) :
-
Time
- \(T_{\mathrm{sw}}\) :
-
Switching period
- \(\underline{u}_{\mathrm{\alpha \beta ,A}}\)/\(\underline{u}_{\mathrm{\alpha \beta ,B}}\) :
-
Voltage space vector of 3-phase system A/B
- \(\underline{u}_{\mathrm{\alpha \beta ,D}}\)/\(\underline{u}_{\mathrm{\alpha \beta ,L}}\) :
-
Voltage space vector of drive (differential mode)/ suspension (common mode) winding system
- \(u_{\mathrm{ax}}\)/\(u_{\mathrm{s}}\) :
-
Axial bearing / AC phase voltage
- \(u_{\mathrm{p}}\) :
-
Back-EMF
- \(U_{\mathrm{DC}}\) :
-
DC-link voltage
- \(\mathit{WTHD}0\) :
-
Weighted total harmonic distortion with regards to \(U_{\mathrm{DC}}/2\)
- \(X_{\mathrm{D}}\)/\(X_{\mathrm{L}}\) :
-
Drive / levitation winding phase reactance
- \(z\) :
-
Axial position
- 4Q-CB-PWM:
-
4-quadrant chopper feeding with carrier-based pulse width modulation
- AMB:
-
Active magnetic bearing
- CB-PWM:
-
Zero-sequence current feeding with carrier-based pulse width modulation
- DOF:
-
Degree of freedom
- SV-PWM:
-
Zero-sequence current feeding with space vector pulse width modulation
References
Amrhein, W., Gruber, W., Bauer, W., Reisinger, M. (2016): Magnetic levitation systems for cost-sensitive applications—some design aspects. IEEE Trans. Ind. Appl., 52(5), 3739–3752.
Amrhein, W., Silber, S. (1998): Bearingless single-phase motor with concentrated full pitch windings in interior rotor design. In International symposium on magnetic bearings (ISMB), Cambridge, USA (pp. 497–506).
Asama, J., Hamasaki, Y., Oiwa, T., Chiba, A. (2013): Proposal and analysis of a novel single-drive bearingless motor. IEEE Trans. Ind. Electron., 60(1), 129–138.
Asama, J., Oi, T., Oiwa, T., Chiba, A. (2017): Investigation of integrated winding configuration for a two-DOF controlled bearingless PM motor using one three-phase inverter. In IEEE international electric machines and drives conference (IEMDC), Miami, USA (pp. 1–6).
Asama, J., Oi, T., Oiwa, T., Chiba, A. (2018): Simple driving method for a 2-DOF controlled bearingless motor using one three-phase inverter. IEEE Trans. Ind. Appl., 54(5), 4365–4376.
Bauer, W. (2018): The Bearingless Axial Force-Torque Motor (Der lagerlose Axialkraft-Momentenmotor). Ph.D. Thesis, Johannes Kepler University (JKU) Linz, Institute for Electric Drives and Power Electronics, Linz, Austria
Chen, J., Zhu, J., Severson, E. L. (2020): Review of bearingless motor technology for significant power applications. IEEE Trans. Ind. Appl., 56(2), 1377–1388.
Dietz, D., Binder, A. (2018): Bearingless PM synchronous machine with zero-sequence current driven star point-connected active magnetic thrust bearing. Trans. Syst. Technol., 4(3), 5–25.
Dietz, D., Binder, A. (2021): Bearingless PM synchronous machine with axial active magnetic bearing fed by zero-sequence current. E&I, Elektrotech. Inf.tech. 138.
Dietz, D., Messager, G., Binder, A. (2018): 1 kW/ 60 000 min−1 bearingless PM motor with combined winding for torque and rotor suspension. IET Electr. Power Appl., 12(8), 1090–1097.
Fu, Y., Takemoto, M., Ogasawara, S., Orikawa, K. (2020): Investigation of operational characteristics and efficiency enhancement of an ultra-high-speed bearingless motor at 100,000 r/min. IEEE Trans. Ind. Appl., 56(4), 3571–3583.
Holmes, D. G., Lipo, T. A. (2003): Pulse width modulation for power converters: principles and practice. Hoboken, New Jersey, USA: John Wiley.
IXYS-Corporation (2020): Datasheet: littelfuse N-channel-MOSFET IXTK180N15P. www.littelfuse.com.
Kluyskens, V., Dumont, C., Dehez, B. (2017): Description of an electrodynamic self-bearing permanent magnet machine. IEEE Trans. Magn., 53(1), 1–9.
Liu, Z., Chiba, A., Irino, Y., Nakazawa, Y. (2020): Optimum pole number combination of a buried permanent magnet bearingless motor and test results at an output of 60 kW with a speed of 37000 r/min. IEEE Open J. Ind. Appl., 1, 33–41.
Messager, G., Binder, A. (2017): Six-axis rotor magnetic suspension principle for permanent magnet synchronous motor with control of the positive, negative and zero-sequence current components. Appl. Comput. Electromagn. Soc. J., 32(8), 657–662.
Messager, G., Mink, F., Becker, T., Wang, J., Binder, A. (2015): Control interference of electrical machines with double-star winding systems driven by independent current controllers. In European conference on power electronics and applications (EPE ECCE-Europe), Geneva, Switzerland (pp. 1–10).
Mitterhofer, H., Mrak, B., Gruber, W. (2015): Comparison of high-speed bearingless drive topologies with combined windings. IEEE Trans. Ind. Appl., 51(3), 2116–2122.
Mohan, N., Undeland, T. M., Robbins, W. P. (1995): Power electronics: converters, applications, and design. 2. ed. New York, USA: Wiley.
Nguyen, Q. D., Ueno, S. (2011): Modeling and control of salient-pole permanent magnet axial-gap self-bearing motor. IEEE/ASME Trans. Mechatron., 16(3), 518–526.
Reisinger, M., Grabner, H., Silber, S., Amrhein, W., Redemann, C., Jenckel, P. (2010): A novel design of a five axes active magnetic bearing system. In International symposium on magnetic bearings (ISMB), Wuhan, China (pp. 561–566).
Severson, E., Mohan, N. (2017): Bearingless motor system design for industrial applications. In International electric machines and drives conference (IEMDC), Miami, USA (pp. 1–8).
Severson, E. L., Nilssen, R., Undeland, T., Mohan, N. (2017): Design of dual purpose no-voltage combined windings for bearingless motors. IEEE Trans. Ind. Appl., 53(5), 4368–4379.
Stölting, H. D., Kallenbach, E., Amrhein, W. (Eds.) (2008): Handbook of fractional-horsepower drives. Berlin, Heidelberg, New York: Springer.
Sugimoto, H., Shimura, I., Chiba, A. (2017): A novel stator structure for active axial force improvement in a one-axis actively positioned single-drive bearingless motor. IEEE Trans. Ind. Appl., 53(5), 4414–4421.
Sugimoto, H., Srichiangsa, T., Chiba, A. (2017): Design of a high-speed single-drive bearingless motor. In International electric machines and drives conference (IEMDC), Miami, USA (pp. 1–6).
Acknowledgement
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 437667923, BI 701/22-1 (Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – 437667923, BI 701/22-1). Supported by KEBA Industrial Automation Germany GmbH.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dietz, D., Binder, A. Operational constraints of zero-sequence current feeding in bearingless PM synchronous machines. Elektrotech. Inftech. 138, 383–393 (2021). https://doi.org/10.1007/s00502-021-00902-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-021-00902-4