Abstract
Highly automated driving will have a great impact on people’s social life, changing the way we perceive mobility and its actual meaning and how vehicle occupants act while traveling to their desired destinations. Future highly automated vehicles (HAVs) will have to be updated periodically to continuously improve them and to keep up with the enormous development speed of the entire automated driving (AD) ecosystem. The updating process as well as the high connectivity of HAVs lead to a high risk of cybersecurity attacks through all kinds of internal and external electrical interfaces. Through such attacks, information could be stolen or, even worse, the control over vehicles could be assumed. Hence, security directly influences safety of vehicles. Attacks must be mitigated during all stages of the vehicle’s life cycle, including development, operation, maintenance, and disposal, to reduce security risks and, consequently, safety risks. Currently, there is no well-defined and officially accepted approach to combine safety and cybersecurity activities. Both the standards for functional safety and cybersecurity have to be met and taken into account accordingly during the (development) processes. In this paper, well-known safety and security methods in the automotive sector are summarized. Safety and cybersecurity co-analysis and co-design methods are outlined for the automotive sector with a focus on HAVs. Furthermore, these safety, cybersecurity, and co-engineering methods are evaluated in practice using a real vehicle and the first results are shown. The examined vehicle is the mobile test platform SPIDER. This platform enables the testing of components and vehicle functions in real-world situations and under harsh environmental conditions, which is a prerequisite to ensure safety.
Zusammenfassung
Hochautomatisiertes Fahren wird einen großen Einfluss auf das gesellschaftliche Leben des Menschen haben und die Art und Weise verändern, wie wir Mobilität und ihre tatsächliche Bedeutung wahrnehmen und wie sich die Fahrzeuginsassen während der Fahrt zu den gewünschten Zielen verhalten werden. Zukünftige hochautomatisierte Fahrzeuge (HAVs) müssen regelmäßig aktualisiert werden, um sie kontinuierlich zu verbessern und um mit der enormen Entwicklungsgeschwindigkeit des gesamten Automated Driving (AD)-Ökosystems Schritt zu halten. Der Aktualisierungsprozess sowie die hohe Konnektivität von HAVs führen zu einem hohen Risiko an Angriffen auf die Cybersicherheit über alle Arten von internen und externen elektrischen Schnittstellen. Durch solche Angriffe könnten Informationen gestohlen oder, noch schlimmer, die Kontrolle über Fahrzeuge übernommen werden. Die Cybersicherheit wirkt sich daher direkt auf die funktionale Sicherheit von Fahrzeugen aus. Angriffe müssen in allen Phasen des Fahrzeuglebenszyklus, einschließlich Entwicklung, Betrieb, Wartung und Entsorgung, abgeschwächt werden, um die Cybersicherheits- und damit die funktionalen Sicherheitsrisiken zu reduzieren. Derzeit fehlt ein klar definierter und offiziell akzeptierter Ansatz zur Kombination von funktionalen Sicherheits- und Cybersicherheitsaktivitäten. Sowohl die Standards für funktionale Sicherheit als auch für Cybersicherheit müssen erfüllt und entsprechend in den (Entwicklungs-) Prozessen berücksichtigt werden. In diesem Beitrag werden die im Automobilbereich bekannten Sicherheitsmethoden zusammengefasst. Co-Analyse- und Co-Design-Methoden für funktionale Sicherheit und Cybersicherheit werden für den Automobilbereich mit einem Schwerpunkt auf HAVs erläutert. Des Weiteren werden diese Methoden und implementierte Sicherheitsmaßnahmen praxisnah an einem realen Fahrzeug evaluiert und erste experimentelle Ergebnisse gezeigt. Das untersuchte Fahrzeug ist die mobile Testplattform SPIDER. Diese Plattform ermöglicht es, Komponenten und Fahrzeugfunktionen in realen Situationen und unter rauen Umgebungsbedingungen zu testen, was eine Voraussetzung ist, um Sicherheit zu gewährleisten.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
ISO 26262-9, Road vehicles—Functional safety—Part 9: Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses https://www.iso.org/standard/68391.html.
Abbreviated Injury Scale (AIS) https://www.aaam.org/abbreviated-injury-scale-ais/.
References
Schrammel, B., Schwarzl, C. (2018): Highly Automated Driving—The new challenges for Functional Safety and Cyber Security. White paper. https://www.v2c2.at/wp-content/uploads/2018/11/tuv-austria-white-paper-iv-highly-automated-driving_web.pdf.
Marko, N., Möhlmann, E., Nickovic, D., Niehaus, J., Priller, P., Rooker, M. (2020): Challenges of engineering safe and secure highly automated vehicles. White paper. arXiv:2103.03544.
ISO (2018): ISO 26262 Road vehicles – functional safety.
ISO (2019): ISO/PAS 21448 Road vehicles—safety of the intended functionality.
ISO (2021): ISO/SAE FDIS 21434 Road vehicles—cybersecurity engineering.
Miller, C., Valasek, C. (2013): Adventures in automotive networks and control units. In DEF CON 21 hacking conference.
Leveson, N. (2004): A new accident model for engineering safer systems. In Safety science (Vol. 42, pp. 237–270). https://doi.org/10.1016/S0925-7535(03)00047-X.
Leveson, N., Thomas, J. P. (2018): STPA handbook. https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.
Preschern, C., Kajtazovic, N., Kreiner, C. (2015): Building a safety architecture pattern system. In Proceedings of the 18th European conference on pattern languages of program, EuroPLoP ‘13, New York (pp. 1–55). https://doi.org/10.1145/2739011.2739028.
Macher, G., Schmittner, C., Armengaud, E., Ma, Z., Kreiner, Ch., Martin, H., Brenner, E., Krammer, M. (2017): Integration of security in the development life cycle of dependable automotive CPS. In Solutions for cyber-physical systems (pp. 383–423). https://doi.org/10.4018/978-1-5225-2845-6.ch015.
Marko, N., Vasenev, A., Striecks, C. (2020): Collecting and classifying security and privacy design patterns for connected vehicles: SECREDAS approach. In Computer safety, reliability, and security. SAFECOMP 2020 workshops (pp. 36–53). https://doi.org/10.1007/978-3-030-55583-2_3.
Young, W., Leveson, N. G. (2014): An integrated approach to safety and security based on systems theory. Commun. ACM, 57(2), 31–35. https://doi.org/10.1145/2556938.
Triginer, J. C., Martin, H., Winkler, B., Marko, N. (2020): Integration of safety and cybersecurity analysis through combination of systems and reliability theory methods. In Embedded real-time systems.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995): Design patterns: elements of reusable object-oriented software. Boston: Addison-Wesley Longman Publishing Co.
Martin, H., Ma, Z., Schmittner, Ch., Winkler, B., Krammer, M., Schneider, D., Amorim, T., Macher, G., Kreiner, Ch. (2020): Combined automotive safety and security pattern engineering approach. In Reliability engineering and system safety (Vol. 198). https://doi.org/10.1016/j.ress.2019.106773.
Jiménez, V. J. E., Schwarzl, C., Martin, H. (2019): Evaluation of an indoor localization system for a mobile robot. In IEEE international conference on connected vehicles and expo (ICCVE) (pp. 1–5). https://doi.org/10.1109/ICCVE45908.2019.8965234.
Safety-Critical Systems Club (SCSC)—The Assurance Case Working Group (ACWG). GSN Community Standard. Version 2. January 2018 (SCSC-141B). Online. https://scsc.uk/gsn.
OMG (2021): Structured assurance case metamodel. https://www.omg.org/spec/SACM/About-SACM/.
Wei, R., Kelly, T. P., Dai, X., Zhao, S., Hawkins, R. (2019): Model based system assurance using the structured assurance case metamodel. J. Syst. Softw., 154, 211–233.
Acknowledgements
Virtual Vehicle Research GmbH has received funding within COMET Competence Centers for Excellent Technologies from the Austrian Federal Ministry for Climate Action, the Austrian Federal Ministry for Digital and Economic Affairs, the Province of Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion Agency (FFG) has been authorized for the program management.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Schwarzl, C., Marko, N., Martin, H. et al. Safety and security co-engineering for highly automated vehicles. Elektrotech. Inftech. 138, 469–479 (2021). https://doi.org/10.1007/s00502-021-00934-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-021-00934-w