Skip to main content
Log in

Bipolar DC grids on ships: possibilities and challenges

  • Bericht
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Bibliography

  1. IEEE (2017) IEEE recommended practice for electrical installations on shipboard–design https://doi.org/10.1109/IEEESTD.2017.8007394 (Tech. rep.)

    Book  Google Scholar 

  2. IEEE (2018) IEEE Std 1709-2018 (revision of IEEE Std 1709-2010): IEEE recommended practice for 1 kV to 35 kV medium-voltage DC power systems on ships

    Google Scholar 

  3. Ådnanes AK (2003) Maritime electrical installations and diesel electric propulsion

    Google Scholar 

  4. Akagi H, Isozaki K (2012) A hybrid active filter for a three-phase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive. IEEE Trans Power Electron 27(1):69–77. https://doi.org/10.1109/TPEL.2011.2157977

    Article  Google Scholar 

  5. Barlo DTJ, Zdunek DAD (1995) Stray current corrosion in electrified rail systems – final report, p 47

  6. van der Blij N, Ramirez-Elizondo L, Spaan M, Bauer P (2017) Stability of DC distribution systems: an algebraic derivation. Energies 10(9):1412. https://doi.org/10.3390/en10091412

    Article  Google Scholar 

  7. Bouman EA, Lindstad E, Rialland AI, Strømman AH (2017) State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp Res D Transp Environ 52:408–421. https://doi.org/10.1016/j.trd.2017.03.022

    Article  Google Scholar 

  8. Bruckner T, Bernet S, Steimer PK (2007) Feedforward loss control of three-level active NPC converters. IEEE Trans on Ind Applicat 43(6):1588–1596. https://doi.org/10.1109/TIA.2007.908164

    Article  Google Scholar 

  9. Cairoli P, Dougal RA, Ghisla U, Kondratiev I (2010) Power sequencing approach to fault isolation in dc systems: Influence of system parameters. In: 2010 IEEE Energy Conversion Congress and Exposition, IEEE, Atlanta, GA, pp 72–78 https://doi.org/10.1109/ECCE.2010.5618075

    Chapter  Google Scholar 

  10. Cairoli P, Kondratiev I, Dougal RA (2013) Coordinated control of the bus tie switches and power supply converters for fault protection in DC microgrids. IEEE Trans Power Electron 28(4):2037–2047. https://doi.org/10.1109/TPEL.2012.2214790

    Article  Google Scholar 

  11. Castellan S, Menis R, Tessarolo A, Sulligoi G (2014) Power electronics for all-electric ships with MVDC power distribution system: An overview. In: 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), IEEE, Monte-Carlo, pp 1–7 https://doi.org/10.1109/EVER.2014.6844068

    Chapter  Google Scholar 

  12. Chang G, Wu Y, Shao S, Huang Z, Long T (2020) DC bus systems for electrical ships: recent advances and analysis of a real case. IEEE Electrific Mag 8(3):28–39. https://doi.org/10.1109/MELE.2020.3005697

    Article  Google Scholar 

  13. Che H, Duran M, Hew W, Rahim N, Levi E, Jones M (2012) Dc-link voltage balancing of six-phase wind energy systems with series-connected machineside converters and NPC grid-side converter. In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, IEEE, Montreal, QC, Canada, pp 3541–3546 https://doi.org/10.1109/IECON.2012.6389330

    Chapter  Google Scholar 

  14. Chew BSH, Xu Y, Wu Q (2019) Voltage balancing for bipolar DC distribution grids: a power flow based binary integer multi-objective optimization approach. IEEE Trans Power Syst 34(1):28–39. https://doi.org/10.1109/TPWRS.2018.2866817

    Article  Google Scholar 

  15. Cuzner RM, Singh V (2017) Future shipboard MVdc system protection requirements and solid-state protective device topological tradeoffs. IEEE J Emerg Sel Topics Power Electron 5(1):244–259. https://doi.org/10.1109/JESTPE.2016.2638921

    Article  Google Scholar 

  16. Emadi A, Khaligh A, Rivetta C, Williamson G (2006) Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans Veh Technol 55(4):1112–1125. https://doi.org/10.1109/TVT.2006.877483

    Article  Google Scholar 

  17. Fan L, Miao Z (2020) Admittance-based stability analysis: Bode plots, nyquist diagrams or eigenvalue analysis? IEEE Trans Power Syst 35(4):3312–3315

    Article  Google Scholar 

  18. Grönholm T, Mäkelä T, Hatakka J, Jalkanen JP, Kuula J, Laurila T, Laakso L, Kukkonen J (2021) Evaluation of methane emissions originating from LNG ships based on the measurements at a remote marine station. Environ Sci Technol 55(20):13,677–13,686. https://doi.org/10.1021/acs.est.1c03293

    Article  Google Scholar 

  19. Hertem DV, Gomis-Bellmunt O, Liang J (2016) HVDC GRIDS: for offshore and supergrid of the future

  20. IPCC (2018) Change IPoC Global warming of 1.5° C: an IPCC special report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways (in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty)

  21. Kim K, Park K, Roh G, Chun K (2018) Dc-grid system for ships: a study of benefits and technical considerations. J Int Marit Saf Environ Aff Shipp 2(1):1–12

    Google Scholar 

  22. Kumar D, Zare F (2019) A comprehensive review of maritime microgrids: system architectures, energy efficiency, power quality, and regulations. IEEE Access 7:67,249–67,277. https://doi.org/10.1109/ACCESS.2019.2917082

    Article  Google Scholar 

  23. Lago J, Moia J, Heldwein ML (2011) Evaluation of power converters to implement bipolar DC active distribution networks—DC-DC converters. In: 2011 IEEE Energy Conversion Congress and Exposition, IEEE, Phoenix, AZ, USA, pp 985–990 https://doi.org/10.1109/ECCE.2011.6063879

    Chapter  Google Scholar 

  24. Li J, Huang AQ, Liang Z, Bhattacharya S (2012) Analysis and design of active NPC (ANPC) inverters for fault-tolerant operation of high-power electrical drives. IEEE Trans Power Electron 27(2):519–533. https://doi.org/10.1109/TPEL.2011.2143430

    Article  Google Scholar 

  25. Liu J, Miura Y, Ise T (2016) Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans Power Electron 31(5):3600–3611. https://doi.org/10.1109/TPEL.2015.2465852

    Article  Google Scholar 

  26. Lu J, Hu Y, Song Y, Su Y, Wang J, Liu J (2021) Assisted power transfer for voltage balance of bipolar DC micro-grids using inactive motor drives. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2021.3137610

    Article  Google Scholar 

  27. Mackay L, Vandeventer E, Ramirez-Elizondo L (2018) Circulating net currents in meshed DC distribution grids: a challenge for residual ground fault protection. IEEE Trans Power Deliv 33(2):1018–1019. https://doi.org/10.1109/TPWRD.2018.2799478

    Article  Google Scholar 

  28. Maes W (2013) Marine electrical knowledge. Antwerp Maritim Academy, Antwerp, p 52

    Google Scholar 

  29. MEPC R (2012) 2016 guidelines for the development of a ship energy efficiency management plan (seemp). International Maritime Organization, London

    Google Scholar 

  30. Mezzarobba M, Spangaro L, Tessarolo A (2011) Experimental evaluation of damper circuit influence on the performance of multiphase synchrnounous generators feeding multiple rectifiers. In: 2011 International Conference on Power Engineering, Energy and Electrical Drives, IEEE, Malaga, Spain, pp 1–6 https://doi.org/10.1109/PowerEng.2011.6036541

    Chapter  Google Scholar 

  31. NEN (2018) Npr 9090:2018 dc installations for low voltage

  32. Nishida K, Ahmed T, Nakaoka M (2010) Development of grid-connected wind energy system employing interior PM synchronous generator and multi-pulse rectifier. In: 2010 IEEE Energy Conversion Congress and Exposition, IEEE, Atlanta, GA, pp 3374–3381 https://doi.org/10.1109/ECCE.2010.5618321

    Chapter  Google Scholar 

  33. de Oliveira TR, Bolzon AS, Donoso-Garcia PF (2014) Grounding and safety considerations for residential DC microgrids. In: IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Dallas, TX, USA, pp 5526–5532 https://doi.org/10.1109/IECON.2014.7049345

    Chapter  Google Scholar 

  34. Paice DA (2010) Power electronic converter harmonics: Multipulse methods for clean power. IEEE Press, Piscataway

    Google Scholar 

  35. Patel MR (2012) Shipboard electrical power systems, p 367

  36. Pestana H (2014) Future trends of electrical propulsion and implications to ship design. In: Soares C, Santos T (eds) Maritime technology and engineering. CRC Press, Boca Raton, pp 797–803 https://doi.org/10.1201/b17494-105

    Chapter  Google Scholar 

  37. Petropoulos D (2016) Transient analysis in dc distribution grids

    Google Scholar 

  38. Revie RW (2008) Corrosion and corrosion control: an introduction to corrosion science and engineering. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  39. Riccobono A, Santi E (2014) Comprehensive review of stability criteria for DC power distribution systems. IEEE Trans on Ind Applicat 50(5):3525–3535. https://doi.org/10.1109/TIA.2014.2309800

    Article  Google Scholar 

  40. Rodriguez J, Bernet S, Steimer PK, Lizama IE (2010) A survey on neutral-point-clamped inverters. IEEE Trans Ind Electron 57(7):2219–2230. https://doi.org/10.1109/TIE.2009.2032430

    Article  Google Scholar 

  41. Satpathi K, Ukil A, Pou J (2018) Short-circuit fault management in DC electric ship propulsion system: protection requirements, review of existing technologies and future research trends. IEEE Trans Transp Electrific 4(1):272–291. https://doi.org/10.1109/TTE.2017.2788199

    Article  Google Scholar 

  42. Smith T, Jalkanen J, Anderson B, Corbett J, Faber J, Hanayama S, O’keeffe E, Parker S, Johanasson L, Aldous L et al (2014) Third IMO GHG study

    Google Scholar 

  43. Staudt V, Bartelt R, Heising C (2015) Fault Scenarios in DC Ship Grids: The advantages and disadvantages of modular multilevel converters. IEEE Electrific Mag 3(2):40–48. https://doi.org/10.1109/MELE.2015.2413436

    Article  Google Scholar 

  44. Sulligoi G, Tessarolo A, Benucci V, Millerani Trapani A, Baret M, Luise F (2013) Shipboard power generation: design and development of a medium-voltage dc generation system. IEEE Ind Appl Mag 19(4):47–55. https://doi.org/10.1109/MIAS.2012.2215643

    Article  Google Scholar 

  45. Sulligoi G, Bosich D, Giadrossi G, Zhu L, Cupelli M, Monti A (2014) Multiconverter medium voltage DC power systems on ships: constant-power loads instability solution using Linearization via state feedback control. IEEE Trans Smart Grid 5(5):2543–2552. https://doi.org/10.1109/TSG.2014.2305904

    Article  Google Scholar 

  46. Sun J (2011) Impedance-based stability criterion for grid-connected inverters. IEEE Trans Power Electron 26(11):3075–3078

    Article  Google Scholar 

  47. Tavakoli SD, Zhang P, Lu X, Hamzeh M (2019) Mutual interactions and stability analysis of bipolar dc microgrids. CSEE J Power Energy Syst 5(4):444–453

    Google Scholar 

  48. van Biert L, Godjevac M, Visser K, Aravind P (2016) A review of fuel cell systems for maritime applications. J Power Sources 327:345–364. https://doi.org/10.1016/j.jpowsour.2016.07.007

    Article  Google Scholar 

  49. VI MA (2012) 2014 guidelines on the method of calculation of the attained energy efficiency design index (eedi) for new ships

    Google Scholar 

  50. Wang F, Lei Z, Xu X, Shu X (2017) Topology deduction and analysis of voltage balancers for DC microgrid. IEEE J Emerg Sel Topics Power Electron 5(2):672–680. https://doi.org/10.1109/JESTPE.2016.2638959

    Article  Google Scholar 

  51. Wulf C, Zapp P, Schreiber A (2020) Review of power-to‑X demonstration projects in europe. Front Energy Res 8:191

    Article  Google Scholar 

  52. Yadav S, Van Der Blii NH, Bauer P (2021) Modeling and stability analysis of radial and zonal architectures of a bipolar dc ferry ship. In: 2021 IEEE Electric Ship Technologies Symposium (ESTS), pp 1–8

    Google Scholar 

Download references

Acknowledgments

This work was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), grant 17628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Yadav.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

The authors Qin and Bauer contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Qin, Z. & Bauer, P. Bipolar DC grids on ships: possibilities and challenges. Elektrotech. Inftech. 139, 458–467 (2022). https://doi.org/10.1007/s00502-022-01036-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-022-01036-x

Navigation