Skip to main content
Log in

Determining optimal technical solutions for new EHV transmission lines (OHL/UGC) in an early project stage

  • CIGRE 2022
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. DNV GL (2020) DNV GL’s Energy Transition Outlook 2020. https://eto.dnvgl.com/2020/index.html. Accessed 07.12.2020

  2. E.-E. Europacable (2011) Joint paper: Feasibility and technical aspects of partial undergrounding of extra high voltage power transmission lines

    Google Scholar 

  3. Cigre (2017) Implementation of long AC HV and EHV cable systems. Cigre Working Group B1.47, vol 680, p 190

    Google Scholar 

  4. London Power Associates (2015) Investigation into mitigation techniques for 400/220 kV cable issues. http://www.eirgridgroup.com/site-files/library/EirGrid/Investigation-into-Mitigation-Techniques-for-Cable-Issues.pdf. Accessed 26.11.2019

  5. CIGRE WG C4.502, “Power System Technical Performance Issues Related to the Application of Long HVAC Cables,” Oct 2013

  6. ENERGINET (2018) Technical issues related to new transmission lines in Denmark (energinet.dk)

    Google Scholar 

  7. CIGRE WG C4.307, “Resonance and Ferroresonance in Power Networks,” 2014

  8. IEEE (2013) IEEE standard for calculating the current-temperature relationship of bare overhead conductors. IEEE

    Google Scholar 

  9. Zhang Y, Zhou X, Niu H‑Q, Wang X‑B, Tang Y, Zhao J‑K, Fan Y‑B (2009) Theoretical calculation and experimental research on thermal time constant of single-core cables. In: Gaodianya Jishu/High Voltage Engineering

    Google Scholar 

  10. Lloyd S, Stapelton G (2011) Hybrid high capacity transmission circuits—challanges for XLPE cables in series with EHV overhead lines. In: Jicable

    Google Scholar 

  11. Cigre (2007) Statistics of AC underground cables in power networks. Working Group B1.07

    Google Scholar 

  12. Bhardwaj V, Lundholm R, Nagels S, Hertem DV, Ergun H, Leterme W, Machl A, Reich K, Bailleul M (2021) Assessing the cable hosting capacity of the Ehv grid. EnergyVille

    Google Scholar 

  13. Khalilnezhad H, Popov M, van der Sluis L, Bos JA, de Jong JPW (2016) Influence of long EHV AC underground cables on the resonance behavior of the Dutch transmission system. In: 2016 IEEE Power and Energy Society General Meeting (PESGM) Boston

    Google Scholar 

  14. Tractebel Engineering (2015) Basisrapport 2nd Opinion—met betrekking tot de beleidswijziging van TenneT om de 20 km ondergrondse kabel in het 380 kV-net los te laten

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Machl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Machl and K. Reich are OVE members.

Paper submitted for the CIGRE Session 2022, SC-C1, August 28–September 2, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machl, A., Reich, K., Lundholm, R. et al. Determining optimal technical solutions for new EHV transmission lines (OHL/UGC) in an early project stage. Elektrotech. Inftech. 140, 176–184 (2023). https://doi.org/10.1007/s00502-022-01095-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-022-01095-0

Navigation