Abstract
To ensure power quality and to meet the grid standards, shunt active power filters based on voltage source inverters are widely used to compensate for fundamental reactive power and distortion power of non-linear loads, such as variable speed drives. For the compensation of the current harmonics, the well-known current control can be applied in multiple rotating frames via PI controllers or in the stationary frame via resonant controllers (or a combination of both). Since each harmonic is controlled by at least one controller, the computational effort rises proportionally to the number of harmonics to be compensated. An alternative control approach are repetitive controllers, which, in theory, offer the possibility to compensate for all harmonics through only one controller.
This paper discusses the application of repetitive controllers in the context of active power filters. It focuses on the control design, especially on the design of the low-pass filter used for the damping of the high-order poles of the transfer function of the repetitive controller, as well as on the implementation and stability analysis.
Zusammenfassung
Um die Netzqualität zu gewährleisten und die Netzstandards zu erfüllen, werden häufig aktive Leistungsfilter, die auf Stromrichtern mit Gleichspannungszwischenkreis basieren, zur Kompensation der Grundschwingungsblindleistung und der Verzerrungsblindleistung nichtlinearer Lasten, wie z. B. drehzahlvariabler Antriebe, eingesetzt. Für die Kompensation der Stromoberschwingungen kann die bekannte Stromregelung in mehreren rotierenden Bezugssystemen über PI-Regler oder im stationären Bezugssystem über resonante Regler (oder eine Kombination aus beiden) angewendet werden. Da jede Oberschwingung durch mindestens einen Regler geregelt wird, steigt der Rechenaufwand proportional zur Anzahl der zu kompensierenden Oberschwingungen. Ein alternativer Regelungsansatz sind repetitive Regler, die theoretisch die Möglichkeit bieten, alle Oberschwingungen mit nur einem Regler zu kompensieren.
In diesem Beitrag wird die Anwendung von repetitiven Reglern im Zusammenhang mit aktiven Leistungsfiltern diskutiert. Er konzentriert sich auf die Reglerauslegung, insbesondere auf die Auslegung des Tiefpassfilters, der zur Dämpfung der Pole hoher Ordnung in der Übertragungsfunktion des repetitiven Reglers verwendet wird, sowie auf die Implementierung und die Stabilitätsanalyse.
Similar content being viewed by others
References
(2014) IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. IEEE Std 519-2014 (Revision of IEEE Std 519-1992) pp 1–29, https://doi.org/10.1109/IEEESTD.2014.6826459
(2016) PQC Series – Active Power Filter. Delta Energy Series, online available: http://www.deltapowersolutions.com/media/download/Brochure_PQC_Active-Power-Filter_en-us.pdf
(2017) Product Brief: PQSine Series of Active Harmonic Filters and Power Optimizers. TDK Europe GmbH., online available: http://en.tdk.eu/blob/1043130/download/4/pfc-pqsine-pb.pdf
Ahn H, Chen Y, Moore KL (2007) Iterative learning control: Brief survey and categorization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37(6):1099–1121, https://doi.org/10.1109/TSMCC.2007.905759
de Almeida PM, Duarte JL, Ribeiro PF, Barbosa PG (2014) Repetitive controller for improving grid-connected photovoltaic systems. IET Power Electronics 7(6):1466–1474, https://doi.org/10.1049/iet-pel.2013.0546
Amanuma K, Fuwa M, Sakaki Y (1994) High accurate ripple reducing method based on the repetitive control. In: Proceedings of 1994 Power Electronics Specialist Conference – PESC’94, vol 1, pp 571–576 vol.1, https://doi.org/10.1109/PESC.1994.349679
Blaabjerg F, Teodorescu R, Liserre M, Timbus A (2006) Overview of Control and Grid Synchronization for Distributed Power Generation Systems. Industrial Electronics, IEEE Transactions on 53(5):1398–1409, https://doi.org/10.1109/TIE.2006.881997
Bosch S (2020) Hybrid Filter for the Compensation of Fundamental Reactive Power and Distortion Power in Low Voltage Grids. In German: Hybridfilter zur Kompensation von Grundschwingungs- und Verzerrungsblindleistung in Niederspannungsnetzen. Dissertation, Technische Universität Dresden
Bosch S, Lebsanft D, Steinhart H (2017) Self-adaptive resonance frequency tracking for digital notch-filter-based active damping in LCL-filter-based active power filters. In: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), pp P.1–P.10, https://doi.org/10.23919/EPE17ECCEEurope.2017.8099104
Bosch S, Staiger J, Steinhart H (2018) Predictive Current Control for an Active Power Filter With LCL-Filter. IEEE Transactions on Industrial Electronics 65(6):4943–4952, https://doi.org/10.1109/TIE.2017.2772176
DIN EN 61000-3-12 (2012) IEC 61000-3-12:2011: Electromagnetic compatibility (EMC) – Part 3‑12: Limits – Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current \(>\) 16 A and \(\leq\) 75 A per phase, in German: Elektromagnetische Verträglichkeit (EMV) – Teil 3‑12: Grenzwerte – Grenzwerte für Oberschwingungsströme, verursacht von Geräten und Einrichtungen mit einem Eingangsstrom \(>\) 16A und \(\leq\) 75A je Leiter, die zum Anschluss an öffentliche Niederspannungsnetze vorgesehen sind; German Version EN 61000-3-12:2011
Garcia-Cerrada A, Pinzon-Ardila O, Feliu-Batlle V, Roncero-Sanchez P, Garcia-Gonzalez P (2007) Application of a Repetitive Controller for a Three-Phase Active Power Filter. IEEE Transactions on Power Electronics 22(1):237–246, https://doi.org/10.1109/TPEL.2006.886609
Hara S, Yamamoto Y, Omata T, Nakano M (1988) Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control 33(7):659–668, https://doi.org/10.1109/9.1274
Lanfang L, Hui M, Xiaogang X, Xiaoke C, Biaoguang S, Yunxiang X (2016) Repetitive control implementation with frequency adaptive algorithm for shunt active power filter. In: 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp 1328–1332, https://doi.org/10.1109/IPEMC.2016.7512482
Liserre M, Teodorescu R, Blaabjerg F (2006) Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame. Power Electronics, IEEE Transactions on 21(3):836–841, https://doi.org/10.1109/TPEL.2006.875566
Mattavelli P, Fasolo S (2000) A closed-loop selective harmonic compensation for active filters. In: Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, vol 1, pp 399–405 vol.1, https://doi.org/10.1109/APEC.2000.826134
Mattavelli P, Marafao FP (2004) Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics 51(5):1018–1024, https://doi.org/10.1109/TIE.2004.834961
Schroedter R (2018) Model-based system design for the control of quasi-static micro scanning mirrors with electrostatic comb drive. In German: Modellbasierter Systementwurf zur Steuerung und Regelung quasi-statischer Mikroscannerspiegel mit elektrostatischem Kammantrieb, 1st edn. Jörg Vogt Verlag, Dresden
Song HS, Keil R, Mutschler P, van der Weem J, Nam K (2003) Advanced control scheme for a single-phase PWM rectifier in traction applications. In: Industry Applications Conference, 2003. 38th IAS Annual Meeting. Conference Record of the, vol 3, pp 1558–1565 vol.3, https://doi.org/10.1109/IAS.2003.1257763
Song Y, Nian H (2015) Enhanced Grid-Connected Operation of DFIG Using Improved Repetitive Control Under Generalized Harmonic Power Grid. IEEE Transactions on Energy Conversion 30(3):1019–1029, https://doi.org/10.1109/TEC.2015.2416357
Song Y, Nian H (2015) Sinusoidal Output Current Implementation of DFIG Using Repetitive Control Under a Generalized Harmonic Power Grid With Frequency Deviation. IEEE Transactions on Power Electronics 30(12):6751–6762, https://doi.org/10.1109/TPEL.2015.2390213
Sun J, Gong J, Chen B, Zha X (2014) Analysis and design of repetitive controller based on regeneration spectrum and sensitivity function in active power filter system. IET Power Electronics 7(8):2133–2140, https://doi.org/10.1049/iet-pel.2013.0614
Tang M, Gaeta A, Formentini A, Zanchetta P (2017) A Fractional Delay Variable Frequency Repetitive Control for Torque Ripple Reduction in PMSMs. IEEE Transactions on Industry Applications 53(6):5553–5562, https://doi.org/10.1109/TIA.2017.2725824
Teodorescu R, Blaabjerg F, Borup U, Liserre M (2004) A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation. In: Applied Power Electronics Conference and Exposition, 2004. APEC ’04. Nineteenth Annual IEEE, vol 1, pp 580–586 Vol.1, https://doi.org/10.1109/APEC.2004.1295865
Teodorescu R, Liserre M, Rodriguez P (2011) Grid Converters for Photovoltaic and Wind Power Systems -. John Wiley & Sons, New York
Unbehauen H (2008) Control Theory – Classic methods for the analysis and synthesis of linear continuous control systems, fuzzy control systems. In German: Regelungstechnik I – Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme, 15th edn. Springer-Verlag, Berlin Heidelberg New York
Zha X, Sun J, Chen Y (2003) Application of iterative learning control to active power filter and its robustness design. In: IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC ’03., vol 2, pp 785–790, https://doi.org/10.1109/PESC.2003.1218156
Zmood D, Holmes D (2003) Stationary frame current regulation of PWM inverters with zero steady-state error. Power Electronics, IEEE Transactions on 18(3):814–822, https://doi.org/10.1109/TPEL.2003.810852
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Jochen Staiger, Heinrich Steinhart and Wilfried Hofmann contributed equally to this work.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Bosch, S., Staiger, J., Steinhart, H. et al. Repetitive controllers for shunt active power filters – control design, implementation and stability analysis. Elektrotech. Inftech. 140, 391–400 (2023). https://doi.org/10.1007/s00502-023-01134-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-023-01134-4