Skip to main content
Log in

Repetitive controllers for shunt active power filters – control design, implementation and stability analysis

Repetitive Regler für Shunt Active Power Filters – Reglerauslegung, Implementierung und Stabilitätsanalyse

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

To ensure power quality and to meet the grid standards, shunt active power filters based on voltage source inverters are widely used to compensate for fundamental reactive power and distortion power of non-linear loads, such as variable speed drives. For the compensation of the current harmonics, the well-known current control can be applied in multiple rotating frames via PI controllers or in the stationary frame via resonant controllers (or a combination of both). Since each harmonic is controlled by at least one controller, the computational effort rises proportionally to the number of harmonics to be compensated. An alternative control approach are repetitive controllers, which, in theory, offer the possibility to compensate for all harmonics through only one controller.

This paper discusses the application of repetitive controllers in the context of active power filters. It focuses on the control design, especially on the design of the low-pass filter used for the damping of the high-order poles of the transfer function of the repetitive controller, as well as on the implementation and stability analysis.

Zusammenfassung

Um die Netzqualität zu gewährleisten und die Netzstandards zu erfüllen, werden häufig aktive Leistungsfilter, die auf Stromrichtern mit Gleichspannungszwischenkreis basieren, zur Kompensation der Grundschwingungsblindleistung und der Verzerrungsblindleistung nichtlinearer Lasten, wie z. B. drehzahlvariabler Antriebe, eingesetzt. Für die Kompensation der Stromoberschwingungen kann die bekannte Stromregelung in mehreren rotierenden Bezugssystemen über PI-Regler oder im stationären Bezugssystem über resonante Regler (oder eine Kombination aus beiden) angewendet werden. Da jede Oberschwingung durch mindestens einen Regler geregelt wird, steigt der Rechenaufwand proportional zur Anzahl der zu kompensierenden Oberschwingungen. Ein alternativer Regelungsansatz sind repetitive Regler, die theoretisch die Möglichkeit bieten, alle Oberschwingungen mit nur einem Regler zu kompensieren.

In diesem Beitrag wird die Anwendung von repetitiven Reglern im Zusammenhang mit aktiven Leistungsfiltern diskutiert. Er konzentriert sich auf die Reglerauslegung, insbesondere auf die Auslegung des Tiefpassfilters, der zur Dämpfung der Pole hoher Ordnung in der Übertragungsfunktion des repetitiven Reglers verwendet wird, sowie auf die Implementierung und die Stabilitätsanalyse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. (2014) IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. IEEE Std 519-2014 (Revision of IEEE Std 519-1992) pp 1–29, https://doi.org/10.1109/IEEESTD.2014.6826459

  2. (2016) PQC Series – Active Power Filter. Delta Energy Series, online available: http://www.deltapowersolutions.com/media/download/Brochure_PQC_Active-Power-Filter_en-us.pdf

  3. (2017) Product Brief: PQSine Series of Active Harmonic Filters and Power Optimizers. TDK Europe GmbH., online available: http://en.tdk.eu/blob/1043130/download/4/pfc-pqsine-pb.pdf

  4. Ahn H, Chen Y, Moore KL (2007) Iterative learning control: Brief survey and categorization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37(6):1099–1121, https://doi.org/10.1109/TSMCC.2007.905759

  5. de Almeida PM, Duarte JL, Ribeiro PF, Barbosa PG (2014) Repetitive controller for improving grid-connected photovoltaic systems. IET Power Electronics 7(6):1466–1474, https://doi.org/10.1049/iet-pel.2013.0546

  6. Amanuma K, Fuwa M, Sakaki Y (1994) High accurate ripple reducing method based on the repetitive control. In: Proceedings of 1994 Power Electronics Specialist Conference – PESC’94, vol 1, pp 571–576 vol.1, https://doi.org/10.1109/PESC.1994.349679

  7. Blaabjerg F, Teodorescu R, Liserre M, Timbus A (2006) Overview of Control and Grid Synchronization for Distributed Power Generation Systems. Industrial Electronics, IEEE Transactions on 53(5):1398–1409, https://doi.org/10.1109/TIE.2006.881997

  8. Bosch S (2020) Hybrid Filter for the Compensation of Fundamental Reactive Power and Distortion Power in Low Voltage Grids. In German: Hybridfilter zur Kompensation von Grundschwingungs- und Verzerrungsblindleistung in Niederspannungsnetzen. Dissertation, Technische Universität Dresden

  9. Bosch S, Lebsanft D, Steinhart H (2017) Self-adaptive resonance frequency tracking for digital notch-filter-based active damping in LCL-filter-based active power filters. In: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), pp P.1–P.10, https://doi.org/10.23919/EPE17ECCEEurope.2017.8099104

  10. Bosch S, Staiger J, Steinhart H (2018) Predictive Current Control for an Active Power Filter With LCL-Filter. IEEE Transactions on Industrial Electronics 65(6):4943–4952, https://doi.org/10.1109/TIE.2017.2772176

  11. DIN EN 61000-3-12 (2012) IEC 61000-3-12:2011: Electromagnetic compatibility (EMC) – Part 3‑12: Limits – Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current \(>\) 16 A and \(\leq\) 75 A per phase, in German: Elektromagnetische Verträglichkeit (EMV) – Teil 3‑12: Grenzwerte – Grenzwerte für Oberschwingungsströme, verursacht von Geräten und Einrichtungen mit einem Eingangsstrom \(>\) 16A und \(\leq\) 75A je Leiter, die zum Anschluss an öffentliche Niederspannungsnetze vorgesehen sind; German Version EN 61000-3-12:2011

  12. Garcia-Cerrada A, Pinzon-Ardila O, Feliu-Batlle V, Roncero-Sanchez P, Garcia-Gonzalez P (2007) Application of a Repetitive Controller for a Three-Phase Active Power Filter. IEEE Transactions on Power Electronics 22(1):237–246, https://doi.org/10.1109/TPEL.2006.886609

  13. Hara S, Yamamoto Y, Omata T, Nakano M (1988) Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control 33(7):659–668, https://doi.org/10.1109/9.1274

  14. Lanfang L, Hui M, Xiaogang X, Xiaoke C, Biaoguang S, Yunxiang X (2016) Repetitive control implementation with frequency adaptive algorithm for shunt active power filter. In: 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp 1328–1332, https://doi.org/10.1109/IPEMC.2016.7512482

  15. Liserre M, Teodorescu R, Blaabjerg F (2006) Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame. Power Electronics, IEEE Transactions on 21(3):836–841, https://doi.org/10.1109/TPEL.2006.875566

  16. Mattavelli P, Fasolo S (2000) A closed-loop selective harmonic compensation for active filters. In: Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, vol 1, pp 399–405 vol.1, https://doi.org/10.1109/APEC.2000.826134

  17. Mattavelli P, Marafao FP (2004) Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics 51(5):1018–1024, https://doi.org/10.1109/TIE.2004.834961

  18. Schroedter R (2018) Model-based system design for the control of quasi-static micro scanning mirrors with electrostatic comb drive. In German: Modellbasierter Systementwurf zur Steuerung und Regelung quasi-statischer Mikroscannerspiegel mit elektrostatischem Kammantrieb, 1st edn. Jörg Vogt Verlag, Dresden

  19. Song HS, Keil R, Mutschler P, van der Weem J, Nam K (2003) Advanced control scheme for a single-phase PWM rectifier in traction applications. In: Industry Applications Conference, 2003. 38th IAS Annual Meeting. Conference Record of the, vol 3, pp 1558–1565 vol.3, https://doi.org/10.1109/IAS.2003.1257763

  20. Song Y, Nian H (2015) Enhanced Grid-Connected Operation of DFIG Using Improved Repetitive Control Under Generalized Harmonic Power Grid. IEEE Transactions on Energy Conversion 30(3):1019–1029, https://doi.org/10.1109/TEC.2015.2416357

  21. Song Y, Nian H (2015) Sinusoidal Output Current Implementation of DFIG Using Repetitive Control Under a Generalized Harmonic Power Grid With Frequency Deviation. IEEE Transactions on Power Electronics 30(12):6751–6762, https://doi.org/10.1109/TPEL.2015.2390213

  22. Sun J, Gong J, Chen B, Zha X (2014) Analysis and design of repetitive controller based on regeneration spectrum and sensitivity function in active power filter system. IET Power Electronics 7(8):2133–2140, https://doi.org/10.1049/iet-pel.2013.0614

  23. Tang M, Gaeta A, Formentini A, Zanchetta P (2017) A Fractional Delay Variable Frequency Repetitive Control for Torque Ripple Reduction in PMSMs. IEEE Transactions on Industry Applications 53(6):5553–5562, https://doi.org/10.1109/TIA.2017.2725824

  24. Teodorescu R, Blaabjerg F, Borup U, Liserre M (2004) A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation. In: Applied Power Electronics Conference and Exposition, 2004. APEC ’04. Nineteenth Annual IEEE, vol 1, pp 580–586 Vol.1, https://doi.org/10.1109/APEC.2004.1295865

  25. Teodorescu R, Liserre M, Rodriguez P (2011) Grid Converters for Photovoltaic and Wind Power Systems -. John Wiley & Sons, New York

  26. Unbehauen H (2008) Control Theory – Classic methods for the analysis and synthesis of linear continuous control systems, fuzzy control systems. In German: Regelungstechnik I – Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme, 15th edn. Springer-Verlag, Berlin Heidelberg New York

  27. Zha X, Sun J, Chen Y (2003) Application of iterative learning control to active power filter and its robustness design. In: IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC ’03., vol 2, pp 785–790, https://doi.org/10.1109/PESC.2003.1218156

  28. Zmood D, Holmes D (2003) Stationary frame current regulation of PWM inverters with zero steady-state error. Power Electronics, IEEE Transactions on 18(3):814–822, https://doi.org/10.1109/TPEL.2003.810852

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swen Bosch.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jochen Staiger, Heinrich Steinhart and Wilfried Hofmann contributed equally to this work.

Appendix

Appendix

 

Fig. 21
figure 21

Difference of the magnitude response \(|G_{\text{MAV}}|-|G_{\text{PT2}}|\) and the phase response \(\angle G_{\text{MAV}}-\angle G_{\text{PT2}}\) of the MAV-filter and the PT2-filter

Table 3 Parameters
Table 4 Transfer Functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosch, S., Staiger, J., Steinhart, H. et al. Repetitive controllers for shunt active power filters – control design, implementation and stability analysis. Elektrotech. Inftech. 140, 391–400 (2023). https://doi.org/10.1007/s00502-023-01134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-023-01134-4

Keywords

Schlüsselwörter

Navigation