Abstract
This paper proposes a new codebook generation algorithm for image data compression using a combined scheme of principal component analysis (PCA) and genetic algorithm (GA). The combined scheme makes full use of the near global optimal searching ability of GA and the computation complexity reduction of PCA to compute the codebook. The experimental results show that our algorithm outperforms the popular LBG algorithm in terms of computational efficiency and image compression performance.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7flb1.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7flb2.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7flb3.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7flb4.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7fhb5.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7fhb6.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7fhb7.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00521-004-0455-7/MediaObjects/s00521-004-0455-7fhb8.jpg)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Srinivas M, Patnailk LM (1994) Genetic algorithms: a survey. Computer 27(6):17–26
Koza JR (1995) Survey of genetic algorithms and genetic programming. In: WESCON/’95, pp 589–594
Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan press, Ann Arbor
Liu B (2002) Theory and practice of uncertain programming. Phisica-verlag, Heidelberg
Kinsner W (2002) Compression and its metrics for multimedia. In: IEEE proceedings of ICCI’02, pp 107–121
Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95
Gray RM (1984) Vector quantization. IEEE ASSP Mag 1(2):4–29
Nasrabadi NM, King RA (1988) Image coding using vector quantization: a review. IEEE Trans Commun 36(8):957–971
Cosman PC, Gray RM, Vetterli M (1996) Vector quantization of image subbands: a survey. IEEE Trans Image Process 5(2):202–225
Li RY, Kim J, Al-Shamakhi N (2002) Image compression using transformed vector quantization. Image Vis Comput 20:37–45
Rose K, Gurewitz E, Fox GC (1992) Vector Quantization by deterministic annealing. IEEE Trans Inform Theory 38(4):1249–1257
Rose K (1998) Deterministic annealing for clustering, compression, classification, regression and related optimization problems. Proc IEEE 86:2210–2239
Zeger K, Vaisey J, Gersho A (1992) Globally optimal vector quantizer design by stochastic relaxation. IEEE Trans Signal Process 40(2):310–322
Zeger K, Gersho A (1989) Stochastic relaxation algorithm for improved vector quantizier designing. Electron Lett 25(14):896–898
Karayiannis NB, Liu Z (2000) Split and merge codebook design algorithms for image compression. J Electron Imaging 9(4):509–520
Vaisey J, Gersho A (1988) Simulated annealing and codebook design. In: Proceedings ICASSP’88, pp 1176–1179
Ma CK, Chan CK (1991) Maximum descent method for image vector quantization. Electron Lett 27(12):1772–1773
Pan JS, Mcinnes FR, Jack MA (1996) Application of parallel genetic algorithm and property of multiple global optimal to VQ codevector index assignment for noisy channels. Electron Lett 32(4):296–297
Delport V, Koschorreck M (1995) Genetic algorithm for codebook design in vector quantization. Electron Lett 31(2):84–85
Chang CC, Lin DC, Chen TS (1997) An improved VQ Codebook search algorithm using principal component analysis. J Vis Commun Image Represent 8(1):27–37
Wu X (1992) Vector quantizer design by constrained global optimization. In: IEEE proceedings of DCC ’92, pp 132–141
Lee RCT, Chin YH, Chang SC (1976) Application of principal component analysis to multikey searching. IEEE Trans Softw Eng 2(3):185–193
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, H., Lam, KY., Chung, SL. et al. Efficient vector quantization using genetic algorithm. Neural Comput & Applic 14, 203–211 (2005). https://doi.org/10.1007/s00521-004-0455-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-004-0455-7