Skip to main content
Log in

Multiscale Bayesian texture segmentation using neural networks and Markov random fields

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a wavelet-based texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields (MRF) in a multi-scale Bayesian framework. Inputs and outputs of MLP networks are constructed to estimate a posterior probability. The multi-scale features produced by multi-level wavelet decompositions of textured images are classified at each scale by maximum a posterior (MAP) classification and the posterior probabilities from MLP networks. An MRF model is used in order to model the prior distribution of each texture class, and a factor, which fuses the classification information through scales and acts as a guide for the labeling decision, is incorporated into the MAP classification of each scale. By fusing the multi-scale MAP classifications sequentially from coarse to fine scales, our proposed method gets the final and improved segmentation result at the finest scale. In this fusion process, the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. Our texture segmentation method was applied to segmentation of gray-level textured images. The proposed segmentation method shows better performance than texture segmentation using the hidden Markov trees (HMT) model and the HMTseg algorithm, which is a multi-scale Bayesian image segmentation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tuceryan M, Jain AK (1998) Texture analysis. In: Chen CH, Pau LF, Wang PSP (eds) The handbook of pattern recognition and computer vision, 2nd edn. World Scientific Publishing Co., pp. 207–248

    Google Scholar 

  2. Vaidyanathan G, Lynch PM (1990) Edge based texture segmentation. In: IEEE proceedings of Southeastcon 90’ 3:1110–1115

  3. Georgeson MA (1979) Spatial fourier analysis and human vision, chap. 2. In: Southland NS (ed) Tutorial essays in psychology, a guide to recent advance, vol 2, Lawrence Earlbaum Associate, Hillsdale

    Google Scholar 

  4. Devalois RL, Albrecht DG, Thorell LG (1982) Spatial-frequency selectivity of cells in macaque visual cortex. Vis Res 22:545–559

    Article  Google Scholar 

  5. Silverman MS, Crosof DH, De Valois RL, Elfar SD (1989) Spatial-frequency organization in primate strate cortex. Natl Acad Sci USA 86

  6. Fan G, Xia XG (2001) A joint multicontext and multiscale approach to Bayesian image segmentation. IEEE Trans Geosci Remote Sens 39(12):2680–2688

    Article  Google Scholar 

  7. Cheng H, Bouman CA (2001) Multiscale Bayesian segmentation using a trainable context model. IEEE Trans Image Process 10(4):511–525

    Article  MATH  Google Scholar 

  8. Bouman C, Liu B (1991) Multiple resolution segmentation of textured images. IEEE Trans Pattern Anal Mach Intell 13(2):99–113

    Article  Google Scholar 

  9. Ng I, Kittler J, Illingworth J (1993) Supervised segmentation using a multiresolution data representation. Signal Process 31:133–163

    Article  MATH  Google Scholar 

  10. Meyer Y (1993) Wavelets algorithm and application. SIAM, Philadelphia

    Google Scholar 

  11. Li J, Gray RM, Olshen RA (2000) Multiresolution image classification by hierarchical modeling with two-dimensional hidden Markov models. IEEE Trans Inf Theory 46(5):1826–1841

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim TH, Eom IK, Kim YS (2005) Texture segmentation using neural networks and multi-scale wavelet feature. Lecture Notes in Computer Science 3611. Springer, Berlin, Heidelberg, pp 395–404

    Google Scholar 

  13. Choi HK, Baraniuk RG (2001) Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(9):1309–1321

    Article  MathSciNet  Google Scholar 

  14. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4:1549–1560

    Article  Google Scholar 

  15. Weldon TP, Higgins WE (1996) Design of multiple Gabor filters for texture segmentation. In Proceedings of international conference acoustic speech, signal proceeding, Atlanta, pp 2243–2246

  16. Fan G, Xia XG (2003) Wavelet-based texture analysis and synthesis using hidden Markov models. IEEE Trans Circuits Syst Fundam Theory Appl 50(1):106–120

    Article  MathSciNet  Google Scholar 

  17. Sun J, Gu D, Zhang S, Chen Y (2004) Hidden Markov Bayesian texture segmentation using complex wavelet transform. IEE Proc Visi Image Signal Process 151(3):215–223

    Article  Google Scholar 

  18. Randen T, Husoy JH (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291–310

    Article  Google Scholar 

  19. Wouwer GV, Scheunders P, Dyck DV (1999) Statistical texture characterization from discrete wavelet representations. IEEE Trans Image Process 8(4):592–598

    Article  Google Scholar 

  20. Crouse M, Nowak R, Baraniuk RG (1998) Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans Signal Process 46(4):886–902

    Article  MathSciNet  Google Scholar 

  21. Fan G, Xia XG (2001) Image denoising using a local contextual hidden Markov model in the wavelet domain. IEEE Signal Process Lett 8(5):125–128

    Article  MathSciNet  Google Scholar 

  22. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. A Wiley Interscience Publication, London. pp 51–63, 161–192, 576–582

  23. Gish H (1990) A probabilistic approach to the understanding and training of neural network classifiers. In: Proceedings of IEEE international conference on acoustics, speech and signal processing. Albuquerque, pp 1361–1364

  24. Richard MD, Lippmann RP (1991) Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput 3:461–483

    Article  Google Scholar 

  25. Rojas R (1996) Short proof of the posterior probability property of classifier neural networks. Neural Comput 8:41–43

    Article  Google Scholar 

  26. Li SZ (1995) Markov random field modeling in computer vision. Springer, New York

    Google Scholar 

  27. Li SZ (2001) In: Kunii TL (eds) Markov random field modeling in image analysis, 2nd edn. Computer science workbench. Springer, Berlin

  28. Duda RO, Hart PE, Stork DG (2002) Pattern classification, 2nd edn. Wiley Interscience Publication, London. Revised chapter section 2.11

  29. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462

    Article  MATH  Google Scholar 

  30. Shapiro JM (1996) Image compression by texture modeling in the wavelet domains. IEEE Trans Signal Process 5(1):26–36

    Google Scholar 

  31. Simoncelli EP (1997) Statistical models for images: compression, restoration and synthesis. In: Proceedings of 31st Asilomar conference on signals, systems and computers. Pacific Grove, pp 673–678

  32. Derin H, Elliot H (1987) Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans Pattern Anal Mach Intell 9(1):39–55

    Article  Google Scholar 

  33. Manjunath BS, Simchony T, Chellappa R (1990) Stochastic and deterministic networks for texture segmentation. IEEE Trans Acoust Speech Signal Process 38(6):39–55

    Article  Google Scholar 

  34. Mallat S (1998) A wavelet tour of signal processing. Academic Press, New York

    MATH  Google Scholar 

  35. Reidmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the Rprop algorithm. In: Proceedings of the IEEE international conference on neural networks, San Francisco

  36. Demuth H, Beale M, Neural network toolbox for use with MATLAB, User’s Guide Version 4, The MathWorks Inc., pp137–194

  37. Fan G, Xia XG (2001) Improved hidden Markov models in the wavelet-domain. IEEE Trans Signal Process 49(1):115–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Kyu Eom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Eom, I.K. & Kim, Y.S. Multiscale Bayesian texture segmentation using neural networks and Markov random fields. Neural Comput & Applic 18, 141–155 (2009). https://doi.org/10.1007/s00521-007-0167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-007-0167-x

Keywords

Navigation