Skip to main content
Log in

Identification using ANFIS with intelligent hybrid stable learning algorithm approaches

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper suggests novel hybrid learning algorithm with stable learning laws for adaptive network based fuzzy inference system (ANFIS) as a system identifier and studies the stability of this algorithm. The new hybrid learning algorithm is based on particle swarm optimization (PSO) for training the antecedent part and gradient descent (GD) for training the conclusion part. Lyapunov stability theory is used to study the stability of the proposed algorithm. This paper, studies the stability of PSO as an optimizer in training the identifier, for the first time. Stable learning algorithms for the antecedent and consequent parts of fuzzy rules are proposed. Some constraints are obtained and simulation results are given to validate the results. It is shown that instability will not occur for the leaning rate and PSO factors in the presence of constraints. The learning rate can be calculated on-line and will provide an adaptive learning rate for the ANFIS structure. This new learning scheme employs adaptive learning rate that is determined by input–output data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Zhou Y, Li S, Jin R (2002) A new fuzzy neural network with fast learning algorithm and guaranteed stability for manufacturing process control. Fuzzy Sets Syst 132(2):201–216

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen MS (1999) A comparative study of learning methods in tuning parameters of fuzzy membership functions. IEEE Conf on Syst Man Cybern 3:40–44

    Google Scholar 

  3. Yu W, Li X (2004) Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Trans Fuzzy Syst 12(3):411–420

    Article  Google Scholar 

  4. Polycarpou MM, Ioannou PA (1992) Learning and convergence analysis of neural-type structured networks. IEEE Trans Neural Netw 3(1):39–50

    Article  Google Scholar 

  5. Kim WC, Ahn SC, Kwon WH (1995) Stability analysis and stabilization of fuzzy state space models. Fuzzy Sets Syst 71(1):131–142

    Article  MATH  MathSciNet  Google Scholar 

  6. Lee C-H, Teng C-C (2000) Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 8(4):349–366

    Article  Google Scholar 

  7. Yu W, Li X (2003) Fuzzy neural modeling using stable learning algorithm. In: Proceedings of American control conference, pp 4542–4547

  8. Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3)

  9. Yager RR, Zadeh LA (1994) Fuzzy sets neural networks, and soft computing. Thomson Learning

  10. Kumar M, Garg DP (2004) Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm. In: Proceedings of Japan–USA symposium on flexible automation, Denver Co

  11. Mascioli FM, Varazi GM, Martinelli G (1997) Constructive algorithm for neuro-fuzzy networks. In: Proceedings of the sixth IEEE international conference on fuzzy systems, vol 1, pp 459–464

  12. Jang J-SR, Mizutani E (1996) Levenberg–Marquardt method for ANFIS learning. In: Proceedings of Biennial conference of the North American fuzzy information processing society, pp 87–91

  13. Jang J-SR (1996) Input selection for ANFIS learning. In: Proceedings of the fifth IEEE international conference on fuzzy systems, vol 2, pp 1493–1499

  14. Aliyari M Sh, Teshnehlab M, Sedigh AK (2006) A novel training algorithm in ANFIS structure. In: Proceedings of the American control conferences

  15. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of 6th international symposium micromachine human sci, vol 1, pp 39–43

  16. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of IEEE congress on evolution of computation, pp 1945–1950

  17. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  18. Eberhart RC, Hu X (1999) Human tremor analysis using particle swarm optimization. In: Proceedings of IEEE congress on evolution of computation, pp 1927–1930

  19. Yoshida H, Kawata K, Fukuyama Y, Takayama S, Naknishi Y (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4):1232–1239

    Article  Google Scholar 

  20. Ciuprina G, Ioan D, Munteanu I (2002) Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans Magn 38(2):1037–1040

    Article  Google Scholar 

  21. M.Wachowiak, Smolikova R, Zheng Y, Zurada J, Elmaghraby A (2004) An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans Evol Comput 8(3):289–301

    Article  Google Scholar 

  22. Messerschmidt L, Engelbrecht A (2004) Learning to play games using a PSO-based competitive learning approach. IEEE Trans Evol Comput 8(3):280–288

    Article  Google Scholar 

  23. Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  24. Coello CAC, Pulido G, Lechuga M (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  25. Eberhart RC, Hu X (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of IEEE congress on evolution of computation, pp 1677–1681

  26. Parsopouls KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of ACMSymp appl comput evol comput, pp 603–607

  27. Hu X, Eberhart RC, Shi Y (2003) Particle swarm with extended memory for multiobjective optimization. In: Proceedings of IEEE swarm Intell symp, Indianapolis, pp 193–197

  28. Angeline PJ (1998) Using selection to improve particle swami optimization. In: Proceedings of IEEE congress on evolution of computation, pp 84–89

  29. Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proceedings of IEEE congress on evolution of computation, pp 1958–1962

  30. Kennedy J (1998) The behavior of particle. In: Proceedings of 7th Annu Conf Evol Program, pp 581–589

  31. Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255

    Article  Google Scholar 

  32. Ozcan E, Mohan CK (1999) Particle swami optimization: surfing the waves. In: Proceedings of IEEE congress on evolution of computation, pp 1939–1944

  33. Mahfouf M, Chen M-Y, Linkens DA (2004) Adaptive weighted particle swarm optimization for multi-objective optimal design of alloy steels. In: Proceedings of parallel problem solving from nature VIII conference, pp 761–771

  34. Ho SL, Shiyou Yang, Guangzheng Ni, Edward WC Lo, Wong HC (2005) A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans Magn 41(5):1756–1759

    Article  Google Scholar 

  35. Naka S, Genji T, Yura T, Fukuyama Y (2002) Hybrid particle swarm optimization based distribution state estimation using constriction factor approach. In: Proceedings of Int Conf SCIS & ISIS, vol 2, pp 1083–1088

  36. Miranda V, Fonseca N (2002) EPSO—evolutionary particle swarm optimization, a new algorithm with applications in power systems. In: Proceedings of IEEE Trans distribution Conf exhibition, vol 2, pp 6–10

  37. Miranda V, Fonseca N (2002) EPSO-best-of-two-worlds meta-heuristic applied to power system problems. In: Proceedings of IEEE congress on evolution of computation, vol 2, pp 12–17

  38. Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE Int Conf Evol Comput, pp 1951–1957

  39. Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of IEEE congress on evolution of computation, pp 84–88

  40. Heo JS, Lee KY, Garduno-Ramirez R (2006) Multiobjective control of power plants using particle swarm optimization techniques. IEEE Trans Energy Conversion 21(2):552–561

    Article  Google Scholar 

  41. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical system using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  42. Chatterjee A, Watanabe K (2006) An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators. Neural Comput Appl 15(1):55–61

    Article  Google Scholar 

  43. Aliyari M Sh, Teshnehlab M, Sedigh AK (2007) A novel hybrid learning algorithm for tuning ANFIS parameters using adaptive weighted PSO. In: Proceedings of IEEE Int Fuzzy Sys Conf, July 2007

  44. Takagi H, Hayashi I (1991) NN- driven fuzzy reasoning. Int J Approx Reason 5(3):191–212

    Article  MATH  Google Scholar 

  45. Mackey MC, Glass L (1977) Oscillation and chaos in physical control system. Science 197:287–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Aliyari Shoorehdeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliyari Shoorehdeli, M., Teshnehlab, M. & Sedigh, A.K. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches. Neural Comput & Applic 18, 157–174 (2009). https://doi.org/10.1007/s00521-007-0168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-007-0168-9

Keywords

Navigation