Skip to main content
Log in

A hybrid MPSO-BP structure adaptive algorithm for RBFNs

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a novel hybrid algorithm to determine the parameters of radial basis function neural networks (number of neurons, centers, width and weights) automatically. The hybrid algorithm combines the mix encoding particle swarm optimization algorithm with the back propagation (BP) algorithm to form a hybrid learning algorithm (MPSO-BP) for training Radial Basis Function Networks (RBFNs), which adapts to the network structure and updates its weights by choosing a special fitness function. The proposed method is used to deal with three nonlinear problems, and the results obtained are compared with existent bibliography, showing an improvement over the published methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shahsavand A, Ahmadpour A (2005) Application of optimal RBF neural networks for optimization and characterization of porous materials. Comput Chem Eng 29(10):2134–2143. doi:10.1016/j.compchemeng.2005.07.002

    Article  Google Scholar 

  2. Park J, Sandberg IW (1991) Universal approximation using radial basis functions network. Neural Comput 3(1):246–257. doi:10.1162/neco.1991.3.2.246

    Article  Google Scholar 

  3. Mu T, Asoke K Nandi, RBF neural networks for solving the inverse problem of backscattering spectra. Neural Comput Appl. doi:10.1007/s00521-007-0138-2

  4. Zhang A, Zhang L (2004) RBF neural networks for the prediction of building interference effects. Comput Struc 82:2333–2339. doi:10.1016/j.compstruc.2004.05.014

    Article  Google Scholar 

  5. Ram D, Srivastava L, Pandit M, Sharma J (2007) Corrective action planning using RBF neural network. Appl Soft Comput 7(3):1055–1063. doi:10.1016/j.asoc.2006.10.007

    Article  Google Scholar 

  6. Darken C, Moody J (1990) Fast adaptive K-means clustering: some empirical results. Proceedings of IEEE INNS international joint conference on neural networks, pp 233–238

  7. Chinrungrueng C, Sequin CH (1995) Optimal adaptive k-means algorithm with dynamic adjustment of learning rate. IEEE Trans Neural Netw 6(3):157–168. doi:10.1109/72.363440

    Article  Google Scholar 

  8. Haykin S (1994) Neural networks—a comprehensive foundation. IEEE Press, New York

    MATH  Google Scholar 

  9. Chen S, Cowan CFN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(3):302–309. doi:10.1109/72.80341

    Article  Google Scholar 

  10. Sherstinsky A, Picard RW (1996) On the efficiency of the orthogonal least squares training method for radial basis function networks. IEEE Trans Neural Netw 7(1):195–200. doi:10.1109/72.478404

    Article  Google Scholar 

  11. Hassibi B, Stork DG (1993) Second order derivatives for network pruning: optimal brain surgeon. In: Hanson SJ et al (eds) NIPS, vol 5. Morgan Kaufmann, Los Altos, pp 164–172

    Google Scholar 

  12. Leonardis A, Bischof H (1998) An efficient MDL-based construction of RBF networks. Neural Netw 11(5):963–973. doi:10.1016/S0893-6080(98)00051-3

    Article  Google Scholar 

  13. Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern 34(6):2284–2292. doi:10.1109/TSMCB.2004.834428

    Article  Google Scholar 

  14. Zhang R, Huang G, Saratchandran P, Sundararajan N (2006) Improved GAP-RBF network for classification problems. Neurocomputing. doi: 10.1016/j.neucom.2006.07.016

  15. Alexandridis A, Sarimveis H, Bafas G (2003) A new algorithm for online structure and parameter adaptation of RBF networks. Neural Netw 16(7):1003–1017. doi:10.1016/S0893-6080(03)00052-2

    Article  Google Scholar 

  16. Staianoa A, Tagliaferria R, Pedryczb W (2006) Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 69(13–15):1570–1581. doi:10.1016/j.neucom.2005.06.014

    Article  Google Scholar 

  17. Fritzke B (1994) Fast learning with incremental RBF networks. Neural Process Lett 1(1):2–5. doi:10.1007/BF02312392

    Article  Google Scholar 

  18. Zhu Q, Cai Y, Liu L (1996) A global learning algorithm for a RBF network. Neural Netw 12(3):527–540. doi:10.1016/S0893-6080(98)00146-4

    Article  Google Scholar 

  19. Billings SA, Zheng GL (1995) Radial basis function network configuration using genetic algorithms. Neural Netw 8(6):877–890. doi:10.1016/0893-6080(95)00029-Y

    Article  Google Scholar 

  20. Kennedy J, Eberhart R, Shi YH (2001) Swarm intelligence. Morgan Kaufmann, San Francisco

    Google Scholar 

  21. Liu W, Wang K (2007) Predicting chaotic time series using hybrid particle swarm optimization algorithm. Contr Decis 22(5):562–565

    Google Scholar 

  22. Li XB, Liu D, Zuo L (2007) Application of RBF-PSO in nonlinear calibration for thermocouple sensor. Chin J Sens Actuators 20(4):933–936

    Google Scholar 

  23. Feng HM (2006) Self-generation RBFNs using evolutional PSO learning. Neurocomputing 70(1–3):241–251. doi:10.1016/j.neucom.2006.03.007

    Article  Google Scholar 

  24. Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition. IEEE Trans Electron Comput EC 14(2):326–334. doi:10.1109/PGEC.1965.264136

    Article  MATH  Google Scholar 

  25. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    MATH  MathSciNet  Google Scholar 

  26. Karayiannis NB (1999) Reformulated radial basis neural networks trained by gradient descent. IEEE Trans Neural Netw 10(3):657–671. doi:10.1109/72.761725

    Article  Google Scholar 

  27. Moody J, Darken C (1989) Faster learning in networks of locally tuned processing units. Neural Comput 1(3):281–294. doi:10.1162/neco.1989.1.2.281

    Article  Google Scholar 

  28. Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, New Jersey

    MATH  Google Scholar 

  29. Eberhart R, Kennedy J (1995) Particle swarm optimization. IEEE Int Conf Neural Netw IV:1942–1947

    Google Scholar 

  30. Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceeding congress on evolutionary computation, Washington DC, pp 1951–1957

  31. Shi YH, Eberhart R (1998) A modified particle swarm optimizer. In: IEEE international conference on evolutionary computation, pp 69–73

  32. Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the World multiconference on systemic, cybernetics and informatics, Piscataway, NJ, pp 4104–4109

  33. Wong CC, Chen CC (1999) A hybrid clustering and gradient descent approach for fuzzy modeling. IEEE Trans Syst Man Cybern 29(6):686–693

    Google Scholar 

  34. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(2):4–27. doi:10.1109/72.80202

    Article  Google Scholar 

  35. Liu GP, Kadirkamanathan V, Billings SA (1998) Online identification of nonlinear systems using Volterra polynomial basis function neural networks. Neural Netw 11(9):1645–1657. doi:10.1016/S0893-6080(98)00100-2

    Article  Google Scholar 

  36. Machine Learning Repository UCI. http://www.ics.uci.edu/_mlearn/MLRepository.html

Download references

Acknowledgments

This research was fully supported by National Natural Science Foundation Grant No. 70573101 of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Zhu, K. & Gao, S. A hybrid MPSO-BP structure adaptive algorithm for RBFNs. Neural Comput & Applic 18, 769–779 (2009). https://doi.org/10.1007/s00521-008-0214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-008-0214-2

Keywords

Navigation