Skip to main content
Log in

A face emotion tree structure representation with probabilistic recursive neural network modeling

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper describes a novel structural approach to recognize the human facial features for emotion recognition. Conventionally, features extracted from facial images are represented by relatively poor representations, such as arrays or sequences, with a static data structure. In this study, we propose to extract facial expression features vectors as Localized Gabor Features (LGF) and then transform these feature vectors into FacE Emotion Tree Structures (FEETS) representation. It is an extension of the Human Face Tree Structures (HFTS) representation presented in (Cho and Wong in Lecture notes in computer science, pp 1245–1254, 2005). This facial representation is able to simulate as human perceiving the real human face and both the entities and relationship could contribute to the facial expression features. Moreover, a new structural connectionist architecture based on a probabilistic approach to adaptive processing of data structures is presented. The so-called probabilistic based recursive neural network (PRNN) model extended from Frasconi et al. (IEEE Trans Neural Netw 9:768–785, 1998) is developed to train and recognize human emotions by generalizing the FEETS representation. For empirical studies, we benchmarked our emotion recognition approach against other well known classifiers. Using the public domain databases, such as Japanese Female Facial Expression (JAFFE) (Lyons et al. in IEEE Trans Pattern Anal Mach Intell 21(12):1357–1362, 1999; Lyons et al. in third IEEE international conference on automatic face and gesture recognition, 1998) database and Cohn–Kanade AU-Coded Facial Expression (CMU) Database (Cohn et al. in 7th European conference on facial expression measurement and meaning, 1997), our proposed system might obtain an accuracy of about 85–95% for subject-dependent and subject-independent conditions. Moreover, by testing images having artifacts, the proposed model significantly supports the robust capability to perform facial emotion recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Paul E (2004) Emotions revealed. First owl books. Henry Holt and Company LLC, New York

    Google Scholar 

  2. Isen AM (2000) Positive affect and decision making, in handbook of emotions. Guilford Press, New York, pp 417–435

    Google Scholar 

  3. Baron-Cohen S (1995) Mindblindness: an essay on autism and theory of mind. MIT Press, Cambridge

    Google Scholar 

  4. Perlovsky LI (2001) Neural networks and intellect: using model-based concepts. Oxford University Press, New York (3rd printing)

    Google Scholar 

  5. Wierzbicka A (1999) Emotions across languages and cultures: diversity and universals. Cambridge University Press, Paris

    Book  Google Scholar 

  6. Paul E (1999) Facial expressions. In: Dalgleish T, Powers M (eds) Handbook of cognition and emotion. Wiley, New York

    Google Scholar 

  7. Thompson J (1941) Development of facial expression of emotion in blind and seeing children. Arch Psychol 37:1–47

    Google Scholar 

  8. Tian Y-L, Kanade T, Cohn JF (2001) Recognizing action units for facial expression analysis. IEEE Trans Pattern Anal Mach Intel 23(2):1–18

    Article  MATH  Google Scholar 

  9. Paul E, Friesen W (1978) Facial action coding system: a technique for the measurement of facial movement. Consulting Psychologist Press, Palo Alto

    Google Scholar 

  10. Gianluca D et al (1999) Classifying facial actions. IEEE Trans Pattern Anal Mach Intell 21(10):974–989. doi:10.1109/34.799905

    Article  Google Scholar 

  11. SNHC MPEG4 (1996) Face and body definition and animation parameters. In: ISO/IEC JTC1/SC29/WG11 MPEG96/N1365

  12. Mase K (1991) Recognition of facial expression from optical flow. IEICE Trans E 74(10):3474–3483

    Google Scholar 

  13. Rosenblum M, Yacoob Y, Davis L (1996) Human expression recognition from motion using a radial basis function network architecture. IEEE Trans Neural Netw 7(5):1121–1138. doi:10.1109/72.536309

    Article  Google Scholar 

  14. Lanitis A, Taylor C, Cootes T (1997) Automatic interpretation and coding of face images using flexible models. IEEE Trans Pattern Anal Mach Intell 19(7):743–756. doi:10.1109/34.598231

    Article  Google Scholar 

  15. Belhumeur PN, Hespanha JP, Kriegman DJ (1996) EigenFaces vs. FisherFaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. doi:10.1109/34.598228

    Article  Google Scholar 

  16. Penev PS, Atick JJ (1996) Local feature analysis: a general statistical theory for object representation. Network Comput Neural Syst 7(3):477–500. doi:10.1088/0954-898X/7/3/002

    Article  MATH  Google Scholar 

  17. Bartlett MS, Sejnowski T (1997) Viewpoint invariant face recognition using independent component analysis and attractor networks. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems. MIT Press, Cambridge

    Google Scholar 

  18. Daugman JG (1988) Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans Pattern Anal Mach Intell 36:1169–1179

    MATH  Google Scholar 

  19. Frasconi P, Gori M, Sperduti A (1998) A general framework for adaptive processing of data structures. IEEE Trans Neural Netw 9:768–785. doi:10.1109/72.712151

    Article  Google Scholar 

  20. Tsoi AC (1998) Adaptive processing of data structure : an expository overview and comments. Faculty informatics, University of Wollongong, Wollongong, Australia

  21. Sperduti A, Starita A (1997) Supervised neural networks for classification of structures. IEEE Trans Neural Netw 8:714–735. doi:10.1109/72.572108

    Article  Google Scholar 

  22. Cho SY, Chi Z, Siu WC, Tsoi AC (2003) An Improved Algorithm for learning long-term dependency problems in adaptive processing of data structures. IEEE Trans Neural Netw 14(4):781–793. doi:10.1109/TNN.2003.813831

    Article  Google Scholar 

  23. Cho SY (2008) Probabilistic based recursive model for adaptive processing of data structures. Expert Syst Appl 32(2):1403–1422

    Article  Google Scholar 

  24. Cho S-Y, Wong J-J (2005) Probabilistic based recursive model for face recognition. In: Wang L, Jin Y (eds) Lecture notes in computer science. Springer GmbH, New York, pp 1245–1254

    Google Scholar 

  25. Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A (eds) Advances in Kernel methods—support vector learning. MIT Press, Cambridge, pp 185–208

    Google Scholar 

  26. Aha D, Kibler D (1991) Instance based learning algorithms. Mach Learn 6:37–66

    Google Scholar 

  27. John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: The eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann, San Mateo

  28. Lyons MJ, Budynek J, Akamatsu S (1999) Automatic classification of single facial images. IEEE Trans Pattern Anal Mach Intell 21(12):1357–1362. doi:10.1109/34.817413

    Article  Google Scholar 

  29. Lyons MJ et al (1998) Coding facial expressions with Gabor wavelets. In: Third IEEE international conference on automatic face and gesture recognition. Nara Japan, IEEE Computer Society

  30. Cohn JF et al (1997) Automated face coding: a computer-vision based method of facial expression analysis. In: 7th European conference on facial expression measurement and meaning

  31. Kelly MD (1970) Visual identification of people by computer. Technical report AI-130, Stanford AI Proj., Standford, CA

  32. Yang J, Waibel A (1996) A real-time face tracker. In: IEEE workshop on applications of computer vision. Saratosa, FL, USA

  33. Aras S, Subramanian AK, Zhang Z (2004) Face recognition. In: CSE717 lecture notes. University of Buffalo, New York

  34. Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human face. J Opt Soc Am 4:519–524

    Article  Google Scholar 

  35. Kirby M, Sirovich L (1990) Application of the Karhunen–Loeve procedure for characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12:103–108

    Article  Google Scholar 

  36. Chengjun Liu, Wechsler Harry (2003) Independent component analysis of gabor features for face recognition. IEEE Trans Neural Netw 14(4):919–928. doi:10.1109/TNN.2003.813829

    Article  Google Scholar 

  37. Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional cortical filters. J Opt Soc Am 2(7):1160–1167

    Article  Google Scholar 

  38. Jones J, Palmer L (1987) An evaluation of the two dimensional Gabor Filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258

    Google Scholar 

  39. Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70:1297–1300

    Article  MathSciNet  Google Scholar 

  40. Brunelli R, Poggio T (1993) Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell 15:1042–1052. doi:10.1109/34.254061

    Article  Google Scholar 

  41. Weyrauch B, Huang J Component-based face recognition with 3D morphable models. In: 4th Conference on audio- and video-based biometric person authentication. 2003

  42. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  43. Paul Ekman, Rosenberg EL (1997) What the face reveals: basic and applied studies of spontaneous expression using the facial action coding system (FACS). Oxford University Press, New York

    Google Scholar 

  44. Adolphs R, Damasio H, Tranel D, Damasio AR (1996) Cortical systems for the recognition of emotion in facial expression. J Neurosci 16(23):7678–7697

    Google Scholar 

  45. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842. doi:10.1109/34.531803

    Article  Google Scholar 

  46. Viola P, MR Jones (2001) Robust real-time object detection. In: Second international workshop on statistical and computational theories of vision—modeling, learning, computing, and sampling. Vancouver, Canada

  47. Streit DF, Luginhuhl TE (1994) Maximum likelihood training of probabilistic neural networks. IEEE Trans Neural Netw 5(5):764–783. doi:10.1109/72.317728

    Article  Google Scholar 

  48. Roberts S, Tarassenko L (1994) A probabilistic resource allocating network for novelty detection. Neural Comput 6:270–284. doi:10.1162/neco.1994.6.2.270

    Article  Google Scholar 

  49. Mak MW, Kung SY (2000) Estimation of elliptical basis function parameters by the EM algorithms with application to speaker verification. IEEE Trans Neural Netw 11(4):961–969. doi:10.1109/72.857775

    Article  Google Scholar 

  50. Lin SH, Kung SY, Lin LJ (1997) Face recognition/detection by probabilistic decision-based neural network. IEEE Trans on Neural Networks Spec Issue Biometric Identif 8(1):114–132

    Google Scholar 

  51. Hammer B et al (2004) A general framework for unsupervised processing of structured data. Neurocomputing 57:3–35. doi:10.1016/j.neucom.2004.01.008

    Article  Google Scholar 

  52. Bengio Y, Simard P, Frasconi P (1994) Learning long term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166. doi:10.1109/72.279181

    Article  Google Scholar 

  53. Bengio Y, Frasconi P (1996) Input-Output HMMs for sequence processing. IEEE Trans Neural Netw 7:1231–1249. doi:10.1109/72.536317

    Article  Google Scholar 

  54. Kung SY, Taur JS (1995) Decision-based neural networks with signal/image classification applications. IEEE Trans Neural Netw 6:170–181. doi:10.1109/72.363439

    Article  Google Scholar 

  55. Cho S-Y, Chow TWS (1999) Training multilayer neural networks using fast global learning algorithm—least squares and penalized optimization methods. Neurocomputing 25(1–3):115–131. doi:10.1016/S0925-2312(99)00055-7

    MATH  Google Scholar 

  56. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Statist Soc Ser B Methodological 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  57. Abboud B, Davoine F (2004) Appearance factorization based facial expression recognition and synthesis. In: Proceedings of 17th international conference on Pattern Recognition 4:163–166

  58. Ma L, Khorasani K (2004) Facial expression recognition using constructive feedforward neural networks. IEEE Trans on Systems, Man and Cybernetics Part B 34(3):1588–1595

    Article  Google Scholar 

  59. Guo G, Dyer C (2005) Learning from examples in the small case: face expression recognition systems. IEEE Trans on Systems, Man and Cybernetics Part B 35(3):477–488

    Article  Google Scholar 

  60. Zheng W, Zhou X, Zou C, Zhao C (2006) Facial expression recognition using Kernel canonical correlation analysis (KCCA). IEEE Trans Neural Netw 17(1):233–238. doi:10.1109/TNN.2005.860849

    Article  Google Scholar 

  61. Wu Y, Liu H, Zha H (2005) Modeling facial expression space for recognition. In: Proceedings of international conference on intelligent Robots and systems, pp 1968–1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Yeung Cho.

Appendix A

Appendix A

1.1 A.1. Proof of the condition 1 for PRNN convergence

By taking the expectation in (22) and as \( E\{ {\mathbf{a}}_{k} (n)\Upphi_{j} \} = 0, \) we get

$$ E\{ {\mathbf{a}}_{k} (n + 1)\} = [{\mathbf{I}} - \eta {\mathbf{R}}_{\Upphi } \Upgamma ]E\{ {\mathbf{a}}_{k} (n)\} + \eta {\mathbf{r}}_{{{\text{d}}\Upphi }} \Upgamma , $$
(29)

where we can define:

$$ {\mathbf{R}}_{\Upphi } = E\left\{ {\Upphi_{j}^{R} \Upphi_{j}^{RT} } \right\}, $$
(30)
$$ {\mathbf{r}}_{d\Upphi } = E\left\{ {{\mathbf{d}}_{j} \Upphi_{{_{j} }}^{R} } \right\}, $$
(31)

and

$$ \Upgamma = E\left\{ {\frac{{\partial q^{ - 1} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }}} \right\}. $$
(32)

We refer to R Φ as the correlation matrix of the input pattern set and to r dΦ as the cross-correlation between the input pattern and the desired output. In the mean time, if we assume that \( \Upgamma = E\left\{ {\Uplambda \left( {\Upphi_{j}^{1} } \right)\Upphi_{j}^{1} } \right\} \) as it is applied in a deep tree structure, so we can define a new matrix \( {\mathbf{R}}_{\Upphi }^{*} = {\mathbf{R}}_{\Upphi } \Upgamma \) and \( {\mathbf{r}}_{d\Upphi }^{*} = {\mathbf{r}}_{d\Upphi } \Upgamma \). In order to find the condition for the convergence in the mean, we can make use of an orthogonal similarity transformation on the matrix R *Φ by

$$ {\mathbf{R}}_{\Upphi }^{*} = {\mathbf{P}}\Uplambda {\mathbf{P}}^{\text{T}} , $$
(33)

where Λ is a diagonal matrix made up of the eigenvalues of the matrix R *Φ and P is an orthogonal matrix whose columns are the associated eigenvectors of R *Φ . By the Wiener–Hopf filtering, we can define:

$$ {\mathbf{r}}_{d\Upphi }^{*} = {\mathbf{R}}_{\Upphi }^{*} {\mathbf{a}}_{\text{o}} , $$
(34)

where a o is the optimum solution. Using the above equation for r *dΦ substituting the orthogonal similarity transformation of (33) into (28), we get

$$ E\{ {\mathbf{a}}_{k} (n + 1)\} {\mathbf{P}}^{\text{T}} = \left[ {{\mathbf{I}} - \eta {\mathbf{P}}\Uplambda {\mathbf{P}}^{\text{T}} } \right]E\{ {\mathbf{a}}_{k} (n)\} {\mathbf{P}}^{\text{T}} + \eta \Uplambda {\mathbf{a}}_{\text{o}} {\mathbf{P}}^{\text{T}} . $$
(35)

Let w(n) be defined as a transformed version of the deviation between the \( E\left\{ {{\mathbf{a}}_{k} (n)} \right\} \) and a o . We may have the affine transformation as:

$$ E\{ {\mathbf{a}}_{k} (n)\} = {\mathbf{Pw}}(n) + {\mathbf{a}}_{\text{o}} , $$
(36)

and

$$ E\{ {\mathbf{a}}_{k} (n + 1)\} = {\mathbf{Pw}}(n + 1) + {\mathbf{a}}_{\text{o}} . $$
(37)

So, from (36), we simply to have

$$ \begin{aligned} ({\mathbf{Pw}}(n + 1) + {\mathbf{a}}_{\text{o}} ){\mathbf{P}}^{\text{T}} &= [{\mathbf{I}} - \eta {\mathbf{P}}\Uplambda {\mathbf{P}}^{\text{T}} ]({\mathbf{Pw}}(n) + {\mathbf{a}}_{\text{o}} ){\mathbf{P}}^{\text{T}} + \eta \Uplambda {\mathbf{a}}_{\text{o}} {\mathbf{P}}^{\text{T}} \\ {\mathbf{w}}(n + 1) + {\mathbf{a}}_{\text{o}} {\mathbf{P}}^{\text{T}} &= {\mathbf{w}}(n) - \eta \Uplambda {\mathbf{w}}_{k} (n) + {\mathbf{a}}_{\text{o}} {\mathbf{P}}^{\text{T}} - \eta \Uplambda {\mathbf{a}}_{\text{o}} {\mathbf{P}}^{\text{T}} + \eta \Uplambda {\mathbf{a}}_{\text{o}} {\mathbf{P}}^{\text{T}} \\ {\mathbf{w}}(n + 1) &= {\mathbf{w}}(n)[{\mathbf{I}} - \eta \Uplambda ] \\ \end{aligned}. $$
(38)

The above equation can represent a system of uncoupled homogeneous first-order difference equations as shown:

$$ w_{j} (n + 1) = w_{j} (n)\left( {1 - \eta \lambda_{j} } \right),\quad j = 1,2, \ldots ,(r + m), $$
(39)

where the λ j are the eigenvalues of the matrix R *Φ and w j (n) is the jth element of the vector w(n). For the algorithm to be convergent in the mean, we require that for an arbitrary choice of the initial value of w j (n) the following condition be satisfied:

$$ \left| {1 - \eta \lambda_{j} } \right| < 1.$$
(40)

Under this condition, if w j (n) → 0 as n → ∞, so we can define the selection of the learning parameter η as follow

$$ 0 < \eta < \frac{1}{{\lambda_{\max } }}, $$
(41)

where λ max is the largest eigenvalue of the matrix R *Φ .

1.2 A.2. Proof of Condition 2 for PRNN convergence

The cost function defined in (21) can be expanded by a first order Taylor series as:

$$ J(n + 1) = J(n) + \left[ {\frac{\partial J}{{\partial {\mathbf{a}}_{k} }}} \right]\Updelta {\mathbf{a}}_{k} , $$
(42)

where \( \Updelta {\mathbf{a}}_{k} = \eta \left[ { - \frac{\partial J}{{\partial {\mathbf{a}}_{k} }}} \right]. \) By the convergence theorem of the second distinct, ΔJ ≤ 0 is given, so we define:

$$ \left[ {\frac{\partial J}{{\partial {\mathbf{a}}_{k} }}} \right]\Updelta {\mathbf{a}}_{k} \le 0. $$
(43)

Substituting (23) and (26) into (43), we get,

$$ \eta \left\| { - \left( {{\mathbf{d}}_{j} - {\mathbf{a}}_{k} (n)\Upphi_{j}^{R} } \right)\Upphi_{j}^{R} \frac{{\partial q^{ - l} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }} + \frac{2}{\beta }\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right|\exp \left( { - \frac{{\left\| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right\|^{2} }}{{\beta^{2} }}} \right)} \right\|^{2} \le 0, $$
(44)

and as η is supposed to be positive value, thus we have:

$$ \begin{gathered} - \left( {{\mathbf{d}}_{j} - {\mathbf{a}}_{k} (n)\Upphi_{j}^{R} } \right)\Upphi_{j}^{R} \frac{{\partial q^{ - l} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }} + \frac{2}{\beta }\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right|\exp \left( { - \frac{{\left\| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right\|^{2} }}{{\beta^{2} }}} \right) \le 0 \hfill \\ \Rightarrow \left( {{\mathbf{d}}_{j} - {\mathbf{a}}_{k} (n)\Upphi_{j}^{R} } \right)\Upphi_{j}^{R} \frac{{\partial q^{ - l} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }} \ge \frac{2}{\beta }\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right|\exp \left( { - \frac{{\left\| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right\|^{2} }}{{\beta^{2} }}} \right). \hfill \\ \end{gathered} $$
(45)

Taking the logarithm in both sides to get rid of exp, we have,

$$ \log_{\text {e}} \left\{ {\left( {{\mathbf{d}}_{j} - {\mathbf{a}}_{k} (n)\Upphi_{j}^{R} } \right)\Upphi_{j}^{R} \frac{{\partial q^{ - l} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }}} \right\} \ge \log_{e} \left\{ {\frac{2}{\beta }\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right|} \right\} - \frac{{\left\| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right\|^{2} }}{{\beta^{2} }}. $$
(46)

Initially, we assume that |β| ≫ 0 and is a quite large value, so β 2 → ∞ then \( \frac{1}{{\beta^{2} }} \to 0, \) therefore

$$ \left( {{\mathbf{d}}_{j} - {\mathbf{a}}_{k} (n)\Upphi_{j}^{R} } \right)\Upphi_{j}^{R} \frac{{\partial q^{ - l} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }} \ge \frac{2}{{\beta_{UB} }}\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right| $$
(47)
$$ \Rightarrow \quad \beta_{UB} \le 2\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right|\left[ {\left( {{\mathbf{d}}_{j} - {\mathbf{a}}_{k} (n)\Upphi_{j}^{R} } \right)\Upphi_{j}^{R} \frac{{\partial q^{ - l} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }}} \right]^{ - 1} . $$
(48)

So, we can choose the penalty factor β as follows

$$ 0 < \beta \le \left| {2\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right|\left[ {\left( {{\mathbf{d}}_{j} - {\mathbf{a}}_{k} (n)\Upphi_{j}^{R} } \right)\Upphi_{j}^{R} \frac{{\partial q^{ - l} {\mathbf{y}}_{k} }}{{\partial {\mathbf{a}}_{k} }}} \right]^{ - 1} } \right|. $$
(49)

Assume that it is working under a deep tree structure; Eq. (26) can substitute into (49) as:

$$ 0 < \beta \le \left| {2\left| {{\mathbf{a}}_{k} (n - 1) - {\mathbf{a}}_{k}^{*} } \right|\left[ {{\mathbf{e}}(n)\Upphi_{j}^{R} \Uplambda \left( {\Upphi_{j}^{1} } \right)\Upphi_{j}^{1T} {\mathbf{Q}}} \right]^{ - 1} } \right|. $$
(50)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, JJ., Cho, SY. A face emotion tree structure representation with probabilistic recursive neural network modeling. Neural Comput & Applic 19, 33–54 (2010). https://doi.org/10.1007/s00521-008-0225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-008-0225-z

Keywords

Navigation