Abstract
As high-voltage electric equipment has complex structure and works in harsh environments, fiber Bragg grating (FBG) sensors are applied to realize the real-time monitoring of some parameters in which temperature is the main parameter. Using FBG sensors to monitor temperature of high-voltage electric equipment can overcome the disadvantages of harsh monitoring environment such as high-voltage, big current, strong electromagnetic interference and so on. The fault of high-voltage electric equipment is difficult to be distinguished as there may be many different reasons. The traditional or simple methods cannot totally meet the demand of fault diagnosis of high-voltage electric equipment. First, taking neural network as a classifier to distinguish different fault types from complex fault information in the feature layer can supply a good foundation to final information fusion diagnosis. Second, Dempster–Shafer evidence theory is used to make a comprehensive diagnosis of fault information in the decision layer. All the uses above can increase the speed and accuracy of diagnosis and have practical significance. The fault diagnosis system shows good results and provides an effective way to realize the real-time condition monitoring and more accurate fault diagnosis of high-voltage electric equipment.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aggarwal RK, Johns AT, Jayasinghe JB, Su W (2000) An overview of the condition monitoring of over headlines. Electr Power Syst Res 53:15–21. doi:10.1016/S0378-7796(99)00037-1
Tenbohlen S, Figel F (2000) On-line condition monitoring of power transformers. Power Engineering Society Winter Meeting. IEEE 3:2211–2216
Boger L, Malte HG, Meyer LO et al (2008) Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos Sci Technol 68:1886–1894. doi:10.1016/j.compscitech.2008.01.001
Shenghe Sun (2002) The fiber measurement and sensing technology. Harbin Poly Technical University Press, Harbin
Mandal J, Sun T, Grattan KT (2005) Fiber laser-based temperature sensor systems using uniform wavelength-matched Bragg grating reflectors. Sens Actuators 7:451–461. doi:10.1016/j.sna.2005.01.028
Rafiee J, Arvani F, Harifi A et al (2007) Intelligent condition monitoring of agear box using artificial neural network. Mech Syst Signal Process 21:1746–1754. doi:10.1016/j.ymssp.2006.08.005
Timothy AH, Hojjat A (2000) Monitoring the behavior of steel structures using distributed optical fiber sensors. J Constr Steel Res 53:267–281. doi:10.1016/S0143-974X(99)00043-7
Booth C, McDonald JR (1998) The use of artificial neural networks for condition monitoring of electrical power transformers. Neural Comput 23:97–109
Cullen JD, Athi N, Al-Jader M et al (2008) Multi sensor fusion for online monitoring of the quality of spot welding in automotive industry. Measurement 41:412–423. doi:10.1016/j.measurement.2007.01.006
Lyons WB, Ewald H, Flanagan C, Lewis E (2003) A multi-point optical fibre sensor for condition monitoring in process water systems based on pattern recognition. Measurement 34:301–312. doi:10.1016/S0263-2241(03)00048-4
Belur V (2003) Dasarathy: information fusion as a tool in condition monitoring. Inf Fusion 4:71–73
Kolla SR, Altman SD (2007) Artificial neural network based fault identification scheme implementation for a three-phase induction motor. ISA Trans 46:261–266. doi:10.1016/j.isatra.2006.08.002
Jie Z (2006) Improved on-line process fault diagnosis through information fusion in multiple neural networks. Comput Chem Eng 30:558–571. doi:10.1016/j.compchemeng.2005.11.002
Cheol O, Stephen G (2007) Recognizing vehicle classification information from blade sensor signature. Pattern Recognit Lett 28:1041–1049. doi:10.1016/j.patrec.2007.01.010
Yanjing S, Shen Z, Changxin M (2007). Improved BP Neural Netw Transformer Fault Diagn China Univ Min Technol 17:138–142
Lotufo ADP, Mara LML, Carlos RM (2007) Sensitivity analysis by neural networks applied to power systems transient stability. Electr Power Syst Res 77:730–738. doi:10.1016/j.epsr.2005.09.020
Echavarren FM, Lobato E, Rouco L (2006) A power flow solvability identification and calculation algorithm. Electr Power Syst Res 76:242–250. doi:10.1016/j.epsr.2005.06.006
Patricia RSJ, Syed MI, Tony W et al (1998) A class of hybrid intelligent system for fault diagnosis in electric power systems. Neurocomputing 23:207–224. doi:10.1016/S0925-2312(98)00066-6
Paras M, Tomonobu S, Naomitsu U et al (2006) A neural network based several-hour-ahead electric load forecasting using similar days approach. Electr Power Energy Syst 28:367–373. doi:10.1016/j.ijepes.2005.12.007
Ayan K, Arifoglu U (2004) Power flow state estimator using two-layer neural network structure. Electr Power Syst Res 69:249–258. doi:10.1016/j.epsr.2003.09.001
Wu X, Chen H, Wang W et al (2001) Multi-index fusion-based fault diagnosis theory and methods. Mech Syst Signal Process 15:995–1006. doi:10.1006/mssp.1999.1279
Nan Zhang N, Mladen K (2007) A real time fault analysis tool for monitoring operation of transmission line protective relay. Electr Power Syst Res 77:361–370. doi:10.1016/j.epsr.2006.03.015
Otman B, Yuan XH (2007) Engine fault diagnosis based on multi-sensor information fusion using Dempster–Shafer evidence theory. Inf Fusion 8:379–386
Azadeha A, Ghaderia SF, Anvaria M et al (2007) Performance assessment of electric power generations using an adaptive neural network algorithm. Energy Policy 35:3155–3166. doi:10.1016/j.enpol.2006.11.012
Fan Xianfeng, Ming JZ (2006) Fault diagnosis of machines based on D–S evidence theory. Pattern Recognit Lett 27:366–376. doi:10.1016/j.patrec.2005.08.025
Bo-Suk Y, Kwang JK (2006) Application of Dempster–Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mech Syst Signal Process 20:403–420. doi:10.1016/j.ymssp.2004.10.010
Acknowledgments
This article was supported by the Natural Science Foundation of China (Grant No. 60674107), the Natural Science Foundation of Hebei Province (Grant No. F2006000343), and the Research and Development Plan of Science and Technology of Shijiazhuang (No. 06713026A).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, Y., Wang, Z., Han, X. et al. High-voltage equipment condition monitoring and diagnosis system based on information fusion. Neural Comput & Applic 18, 447–453 (2009). https://doi.org/10.1007/s00521-009-0248-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-009-0248-0