Skip to main content
Log in

Contingency evaluation and monitorization using artificial neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, different neural network-based solutions to the contingency analysis problem are presented. Contingency analysis is examined from two perspectives: as a functional approximation problem obtaining a numerical evaluation and ranking contingencies; and as a graphical monitoring problem, obtaining an easy visualization system of the relative severity of the contingencies. For the functional evaluation problem, we analyze the use of different supervised feed-forward artificial neural networks (multilayer perceptron and radial basis function networks). The proposed systems produce a very accurate evaluation and ranking, and so present a high applicability. For the graphical monitoring problem, unsupervised artificial neural networks such as self-organizing maps by Kohonen have been used. This solution allows both a rapid, easy and simultaneous visualization of the severity level of the complete contingency set. The proposed solutions avoid the main drawbacks of previous neural network approaches to this problem, which are explicitly analyzed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Warwick K, Ekwue A, and Aggarwal R (eds) (1997) Artificial intelligence techniques in power systems. IEE Power Engineering Series 22. The Institution of Electrical Engineers press, New York

  2. Vaahedi E, Fuchs C, Xu W, Mansour Y, Hamadanizadeh H, Morison G (1999) Voltage stability contingency screening and ranking. IEEE Trans Power Syst 14(1):256–265. doi:10.1109/59.744541

    Article  Google Scholar 

  3. Monticelli A, Garcia A, Saavedra OR (1990) Fast decoupled load flow: hypothesis, derivations, and testing. IEEE Trans Power Syst 5(4):1425–1431. doi:10.1109/59.99396

    Article  Google Scholar 

  4. Mori H, Tanaka H, Kanno J (1996) A preconditioned fast decoupled power flow method for contingency screening. IEEE Trans Power Syst 11(1):357–363. doi:10.1109/59.486118

    Article  Google Scholar 

  5. Granelli GP, Montagna M, Pasini GL, Marannino P (1992) Vector computer implementation of power flow outage studies. IEEE Trans Power Syst 7(2):798–804. doi:10.1109/59.141788

    Article  Google Scholar 

  6. Wang L, Lin XR (2000) Robust fast decoupled power flow. IEEE Trans Power Syst 15(1):208–215. doi:10.1109/59.852123

    Article  Google Scholar 

  7. Ejebe GC, Meeteren HPV, Wollenberg BF (1988) Fast contingency screening and evaluation for voltage security analysis. IEEE Trans Power Syst 3(4):302–307. doi:10.1109/59.192968

    Article  Google Scholar 

  8. Lemaître C, Thomas B (1996) Two applications of parallel processing in power system computation. IEEE Trans Power Syst 11(1):246–253. doi:10.1109/59.486102

    Article  Google Scholar 

  9. Santos JR, Expósito AG, Ramos JLM (1999) Distributed contingency analysis: practical issues. IEEE Trans Power Syst 14(4):1349–1354. doi:10.1109/59.801895

    Article  Google Scholar 

  10. Fujiwara R, Sakaguchi T, Kohno Y, Suzuki H (1986) An intelligent load flow engine for power system planning. IEEE Trans Power Syst PAS-3:302–307. doi:10.1109/TPWRS.1986.4334998

    Article  Google Scholar 

  11. Lo KL, Abdelaal AKI (2000) “Fuzzy logic based contingency analysis”, International Conference on Electric Utility Deregulation and Restructuring and Power Technologies 2000,City University, London, pp 499–504

  12. Matos MA, Hatziargyriou ND, Lopes JAP (2000) Multicontingency steady state security evaluation using fuzzy clustering techniques. IEEE Trans Power Syst 15(1):177–183. doi:10.1109/59.852118

    Article  Google Scholar 

  13. Joya G, García-Lagos F, Atencia MA, Sandoval F (2004) Artificial neural networks for energy management system. Applicability and limitations of the main paradigms. Eur J Econ Soc Syst 17(1–2):11–28

    Google Scholar 

  14. Tang SK, Dillon TS, Khosla R (1996) Application of an integrated fuzzy, knowledge-based, connectionistic architecture for fault diagnosis in power systems. In. Proc int conf intell syst appl power syst ISAP 96:188–193. doi:10.1109/ISAP.1996.501066

  15. Refaee JA, Mohandes M, Maghrabi H (1999) Radial basis function networks for contingency analysis of bulk power systems. IEEE Trans Power Syst 14(2):772–778. doi:10.1109/59.761911

    Article  Google Scholar 

  16. Yan HH, Chow JC, Kam M, Fischl R, Sepich CR (1991) Hybrid expert system neural network hierarchical architecture for classifying power system contingencies. In: Proceedings of the first international forum on applications of neural networks to power systems, pp 76–82

  17. Sidhu TS, Cui L (2000) Contingency screening for steady-state security analysis by using FFT and artificial neural networks. IEEE Trans Power Syst 15(1):421–426. doi:10.1109/59.852154

    Article  Google Scholar 

  18. García-Lagos F, Joya G, Marín FJ, Sandoval F (2001) Neural networks for contingency evaluation and monitoring in power systems. In: Mira J, Prieto A (eds) Bio-inspired applications of connectionism, LNCS 2085. Springer-Verlag, Berlin, pp 711–718

    Google Scholar 

  19. Jollife IT (1986) Principal component analysis. Springer, New York

  20. Jackson JE (1991) A user’s guide to principal components. Wiley, New York

  21. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 4(6):989–993. doi:10.1109/72.329697

    Article  Google Scholar 

  22. Tibshirani R (1996) A comparison of some error estimates for neural network models. Neural Comput 8:152–163. doi:10.1162/neco.1996.8.1.152

    Article  Google Scholar 

  23. Chen S, Cowan CFN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2(2):302–309. doi:10.1109/72.80341

    Article  Google Scholar 

  24. García-Lagos F, Joya G, Marín FJ, Sandoval F (2002) Self-organizing maps for contingency analysis: visual classification and temporal evolution. In: Proc. of conference of the IEEE industrial electronics society, Sevilla, 2002

  25. Haykin S (1994) Neural networks. a comprehensive foundation. Macmillan College Publishing Company, New York

    MATH  Google Scholar 

  26. Cottrell M (2003) Some other applications of the SOM algorithm: how to use the Kohonen algorithm for forecasting. In: Invited lecture at the international work-conference on artificial neural networks, IWANN 2003, Vilanova i La Geltrú (Spain), (ftp://samos.univ-paris1.fr/pub/SAMOS/preprints/samos185.pdf)

  27. Cottrell M, Rousset P, Girad B, Girad Y (1995) Daily electric power curves: classification and forecasting using a Kohonen map. In: Mira J, Sandoval F (eds) From natural to artificial neural computation, LNCS 930. Springer, Berlin, pp 1107–1113

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge the interesting comments and suggestions of the reviewers. This work has been partially supported by the Spanish Ministerio de Educación y Ciencia (MEC), project no. TIN2005-01359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco García-Lagos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joya, G., García-Lagos, F. & Sandoval, F. Contingency evaluation and monitorization using artificial neural networks. Neural Comput & Applic 19, 139–150 (2010). https://doi.org/10.1007/s00521-009-0267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0267-x

Keywords

Navigation