Skip to main content
Log in

Neural-adaptive control using alternate weights

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel robust neural-adaptive control method for controlling underdamped non-minimum phase system. Without robust modifications to the training rule, adaptive approximators experience weight weight drift which typically causes control chatter and excitation of the natural frequency. Popular robust modifications, like e-modification and deadzone, significantly reduce performance. In the proposed method, an alternate neural network, providing approximately the same output, guides the training. The proposed algorithm trains the alternate weights in a manner so as to avoid the weight drift caused by underdamped vibrations. Experimental results show dramatic improvement in performance over e-modification when controlling a flexible-joint robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdelhameed M, Pinspon U, Cetinkunt S (2002) Adaptive learning algorithm for CMAC. Mechatronics 12: 859–873

    Article  Google Scholar 

  2. Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97: 220–227

    Article  MATH  Google Scholar 

  3. Albus J (1975) Data storage in the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97: 228–233

    Article  MATH  Google Scholar 

  4. Albus J (1981) Brains, behaviour, and robotics. BYTE Publications Inc., Peterborough

    Google Scholar 

  5. Bridges M, Dawson D, Abdallah C (1995) Control of rigid-link, flexible-joint robots—a survey of backstepping methods. J Robot Syst 12: 199–216

    Article  MATH  Google Scholar 

  6. Brogliato B, Ortega R, Lozano R (1995) Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica 31: 941–956

    Article  MATH  MathSciNet  Google Scholar 

  7. Chatlatanagulchai W, Meckl P (2005) Intelligent control of a two-link flexible-joint robot, using backstepping, neural networks, and direct method. In: IEEE/RSJ internetional conference on intelligent robots and systems. Edmonton, Canada, pp 1594–1599

  8. Chen F, Chang C (1996) Practical stability issues in CMAC neural network control systems. IEEE Trans Control Syst Technol 4: 86–91

    Article  Google Scholar 

  9. Chen F, Chang C (2004) An alternative CMAC trained with genetic algorithms to solve and instable control process. Proceedings of IEEE Conference on Robotics and Biometrics, pp 950–954

  10. Dwivedy S, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41: 749–777

    Article  MATH  MathSciNet  Google Scholar 

  11. French M, Szepesvari C, Rogers E (2000) Uncertainty, performance, and model dependency in approximateadaptive nonlinear control. IEEE Trans Autom Control 45(2): 353–358

    Article  MATH  MathSciNet  Google Scholar 

  12. Gu W, Lei J, Lei Y (2005) Single input rbf neural robust controller design for a class of nonlinear system with linear input unmodeled dynamics and unknown control function matrices. In: Proceedings of IEEE international conference on machine learning and cybernetics. Guangzhou, China, pp 4662–4666

  13. Hwang C (2004) A novel Takagi-Sugeno-based robust adaptive fuzzy sliding-mode controller. IEEE Trans Fuzzy Syst 12: 676–687

    Article  Google Scholar 

  14. Ioannuou P, Kokotovic P (1984) Instability analysis and improvement of robustness of adaptive control. Automatica 20(5): 583–594

    Article  MathSciNet  Google Scholar 

  15. Jiang Z, Wang S (2003) A general learning scheme for CMAC-based controller. Neural Process Lett 18: 125–138

    Article  MATH  Google Scholar 

  16. Kim E (2004) Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic. IEEE Trans Fuzzy Syst 12(3): 368–378

    Article  Google Scholar 

  17. Kim N, Calise A, Hovakimyan N (2004) Several extensions in methods for adaptive output feedback control. In: Proceedings of American control conference, Boston, pp 2421–2426

  18. Kim Y, Lewis F (2000) Optimal design of CMAC neural-network controller for robot manipulators. IEEE Trans Syst Man Cybern C 30(1): 22–30

    Article  Google Scholar 

  19. Kraft L, Pallotta JJ (2000) Real-time vibration control using CMAC neural networks with weight smoothing. In: Proceedings of IEEE American control conference, Chicago, pp 3939–3943

  20. Kuljaca O, Swamy N, Lewis F, Kwan C (2003) Design and implentation of industrial neural network controller using backstepping. IEEE Trans Ind Electron 50: 193–201

    Article  Google Scholar 

  21. Kwan C, Lewis F (2000) Robust backstepping control of nonlinear systems using neural networks. IEEE Trans Syst Man Cybern A 30: 753–766

    Article  Google Scholar 

  22. Lee T, Kumarawadu S, Perng J (2005) Direct-adaptive neurocontrol of robots with unknown nonlieararities and velocity feedback. In: Proceedings of IEEE conference on systems man cybernetics, pp 2073–2077

  23. Lee Y, Zak SH (2004) Uniformly ultimately bounded fuzzy adaptive tracking controllers for uncertain systems. IEEE Trans Fuzzy Syst 12: 797–811

    Article  Google Scholar 

  24. Li Y, Qiang S, Kaynak O (2004) Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans Neural Netw 15(3): 693–701

    Article  Google Scholar 

  25. Macnab C (2006) Robust associative-memory adaptive control in the presence of persistent oscillations. Neural Inf Process Lett Rev 10: 277–287

    Google Scholar 

  26. Macnab C (2009) Stable neural control of a flexible-joint manipulator subjected to sinusoidal disturbance. In: International conference on autonomous robots and agents. Wellington, New Zealand, pp 698–703

  27. Macnab C, D’Eleuterio G (1998) Stable, on-line learning using CMACs for neuroadaptive tracking control of flexible-joint manipulators. In: Proceedings of IEEE international conference on robotics and automation. Leuven, Belgium, pp 511–517

  28. Nakanishi J, Schaal, S (2004) Feedback error learning and nonlinear adaptive control. Neural Netw 17: 1453–1465

    Article  MATH  Google Scholar 

  29. Nicol C, Macnab C, Ramirez-Serrano A (2008) Robust neural network control of a quadrotor helicopter. In: IEEE Proceedings of Canadian conference on electrical and computer engineering. Niagara Falls, Canada, pp 1233–1238

  30. Ozgoli S, Taghirad HD (2006) A survey on the control of flexible joint robots. Asian J Control 8(4): 1–15

    MathSciNet  Google Scholar 

  31. Sanner R, Slotine J (1995) Stable adaptive control of robot manipulators using neural networks. Neural Comput 7(4): 753–790

    Article  Google Scholar 

  32. Slotine J, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res 6(3): 49–59

    Article  Google Scholar 

  33. Spong M, Vidyasagar M (1989) Robot dynamics and control. Wiley, New York

    Google Scholar 

  34. Spooner J, Passino K (1996) Stable adaptive control using fuzzy systems and neural networks. IEEE Trans Fuzzy Syst 4: 339–359

    Article  Google Scholar 

  35. Tomei P, Nicosia S, Ficola A (1986) An approach to the adaptive control of elastic joints robots. Proceedings of IEEE international conference of robotics and Automation, pp 552–558

  36. Wang C, Hill D (2004) Learning from direct adaptive neural control. In: Proceedings of Asian control conference, pp 674–681

  37. Wang D, Huang J (2002) Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form. Automatica 38: 1365–1372

    Article  MATH  Google Scholar 

  38. Yang Y, Feng G, Ren J (2004) A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems. IEEE Trans Syst Man Cybern A 34: 406–419

    Article  Google Scholar 

  39. Yeh M (2007) Single-input CMAC control system. Neurocomputing 70: 2638–2644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. B. Macnab.

Appendix

Appendix

An n-link flexible joint robot with large gear ratios has model

$$ {\bf M} ({\bf x}_1) \dot{{\bf x}}_2 = {\bf F}_1({\bf x}_1,{\bf x}_2) + {\bf K}({\bf x}_3-{\bf x}_1), $$
(39)
$$ {\bf J} \dot{{\bf x}}_4 = {\bf F}_2({\bf x}_1,{\bf x}_2,{\bf x}_3,{\bf x}_4) + {\bf K} ({\bf x}_1 - {\bf x}_3) + {\bf u} , $$
(40)

where

\({\bf x}_1\) :

are link angles

\({\bf x}_2\) :

are link angular velocities

\({\bf x}_3\) :

are rotor angles

\({\bf x}_4\) :

are rotor angular velocities

\({\bf M}({\bf x}_1) \in {\mathcal{R}}^{n \times n}\) :

is the link inertia matrix

\({\bf K} \in {\mathcal{R}}^{n \times n}\) :

is a diagonal matrix of (positive) spring constants

\({\bf J} \in {\mathcal{R}}^{n \times n}\) :

is the rotor inertia matrix (after gear reduction)

\({\bf u} \in {\mathcal{R}}^{n}\) :

is control torque

\( {\bf F}_1, {\bf F}_2 \in {\mathcal{R}}^n\) :

contain linear and non-linear terms.

Given a desired trajectory \(\varvec{\theta}_d,\dot{\varvec{\theta}}_d,\ddot{\varvec{\theta}}_d\) for the link coordinates, then the filtered error tracking error is defined

$$ {\bf z}_1 = \Lambda ({\bf x}_1-\varvec{\theta}_d) + ({\bf x}_2-\dot{\varvec{\theta}}_d) =\Lambda {\bf e}_1 + {\bf e}_2. $$
(41)

To use backstepping, the desired rotor states are considered to be virtual controls. The first virtual control \({\bf v}_1\) contains the desired rotor positions, and the second, \({\bf v}_2\), contains the desired rotor velocities. The virtual control errors are then defined as

$$ {\bf z}_2 = {\bf x}_3 -{\bf v}_1, \qquad {\bf z}_3 = {\bf x}_4 -{\bf v}_2. $$
(42)

The (virtual) controls using CMACs are chosen

$$ {\bf v}_1 =-\varvec{\Gamma}_1 {\hat{\bf w}}_1 +{\bf x}_1 -{\bf G}_1 {\bf z}_1, $$
(43)
$$ {\bf v}_2 =-\varvec{\Gamma}_2 {\hat{\bf w}}_2 +{\bf x}_2 - {\bf z}_1 -{\bf G}_2 {\bf z}_2, $$
(44)
$$ {\bf u} =-\varvec{\Gamma}_3 {\hat{\bf w}}_3 -{\bf z}_2 -{\bf G}_3 {\bf z}_3, $$
(45)

where each \({\bf G}_i\) is a positive-definite matrix of control gains. The closed-loop error dynamics can be written

$$ {\mathcal{I}} \dot{{\bf z}} = -{\mathcal{G}} {\bf z} + {\mathcal{F}} - \varvec{\Gamma} {\hat{\bf w}}, $$
(46)

where

$$ \begin{aligned} {\mathcal{I}} &= \left[ \begin{array}{ccc} {\bf K}^{-1} {\bf M} & {\bf 0} & {\bf 0} \\ {\bf 0} & {\bf I} & {\bf 0} \\ {\bf 0} & {\bf 0} & {\bf J} \end{array} \right] \in {\mathcal{R}}^{6 \times 6}, \qquad {\bf z} = \left[ \begin{array}{c} {\bf z}_1 \\ {\bf z}_2 \\ {\bf z}_3 \end{array} \right]\in {\mathcal{R}}^{6}, \qquad {\mathcal{G}}= \left[ \begin{array}{ccc} {\bf G}_1 & -{\bf 1} & {\bf 0} \\ {\bf 1} & {\bf G}_2 & -{\bf 1} \\ {\bf 0} & {\bf 1} & {\bf G}_3 \end{array} \right],\\ \varvec{\Gamma}&= \left[ \begin{array}{c} \varvec{\Gamma}_1 \\ \varvec{\Gamma}_2 \\ \varvec{\Gamma}_3 \end{array} \right], \qquad {\hat{\bf w}} = \left[ \begin{array}{c} {\hat{\bf w}}_1 \\ {\hat{\bf w}}_2 \\ {\hat{\bf w}}_3 \end{array} \right], \qquad {\mathcal{F}} = \left[ \begin{array}{c} {\mathcal{F}}_1({\bf x}_1,{\bf x}_2, \varvec{\theta}_d, \dot{\varvec{\theta}}_d,\ddot{\varvec{\theta}}_d) +{\bf x}_1\\ {\mathcal{F}}_2({\bf x}_1,{\bf x}_2,{\bf x}_3, \varvec{\theta}_d, \dot{\varvec{\theta}}_d,\ddot{\varvec{\theta}}_d,\varvec{\theta}^{(3)}_d) +{\bf x}_2 \\ {\mathcal{F}}_3 ({\bf x}_1,{\bf x}_2,{\bf x}_3,{\bf x}_4, \varvec{\theta}_d, \dot{\varvec{\theta}}_d,\ddot{\varvec{\theta}}_d,\varvec{\theta}^{(3)}_d,\varvec{\theta}^{(4)}_d) \end{array} \right]. \end{aligned} $$

Since (46) has the same basic form as (5) the stability proof of the new weight update method is still valid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macnab, C.J.B. Neural-adaptive control using alternate weights. Neural Comput & Applic 20, 211–221 (2011). https://doi.org/10.1007/s00521-010-0366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0366-8

Keywords

Navigation