Abstract
The concepts of \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy (p-, q- and a-) ideals of BCI-algebras are introduced and some related properties are investigated. In particular, we describe the relationships among ordinary fuzzy (p-, q- and a-) ideals, (∈, ∈ ∨ q)-fuzzy (p-, q- and a-) ideals and \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy (p-,q- and a-) ideals of BCI-algebras. Moreover, we prove that a fuzzy set μ of a BCI-algebra X is an \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy a-ideal of X if and only if it is both an \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy p-ideal and an \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy q-ideal. Finally, we give some characterizations of three particular cases of BCI-algebras by these generalized fuzzy ideals.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bhakat SK, Das P (1996) (∈, ∈ ∨ q)-fuzzy subgroups. Fuzzy Sets Syst 80:359–368
Davvaz B (2006) (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals. Soft Comput 10:206–211
Dudek WA (1998) On group-like BCI-algebras. Demonstratio Math 21:369–376
Dudek WA, Thomys J (1990) On decompositions of BCH-algebras. Math Japon 35:1131–1138
Esteva F, Godo L (2001) Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst 124:271–288
Hájek P (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht
Imai Y, Iséki K (1966) On axiom system of propositional calculus. Proc Japan Acad 42:19–22
Iséki K (1980) On BCI-algebras. Math Seminar Notes(now Kobe Math J) 8:125–130
Jun YB (2004) On (α, β)-fuzzy ideals of BCK/BCI-algebras. Sci Math Japon 60:613–617
Jun YB, Meng J (1994) Fuzzy p-ideals in BCI-algebras. Math Japon 40:271–282
Liu YL, Meng J (2000) Fuzzy q-ideals in BCI-algebras. J Fuzzy Math 8:873–881
Liu YL, Meng J (2001) Fuzzy ideals in BCI-algebras. Fuzzy Sets Syst 123:227–237
Liu YL, Meng J, Zhang XH and Yue ZC (2000) q-ideals and a-ideals in BCI-algebras. SEA Bull Math 24:243–253
Liu YL, Zhang XH (2002) Fuzzy a-ideals in BCI-algebras. Adv Math (China) 31:65–73
Ma X, Zhan J, Davvaz B, Jun YB (2008) Some kinds of (∈, ∈ ∨ q)-interval-valued fuzzy ideals of BCI-algebras. Inform Sci 178:3738–3754
Meng J, Guo X (2005) On fuzzy ideals in BCK-algebras. Fuzzy Sets Syst 149:509–525
Pu PM, Liu YM (1980) Fuzzy topology I: Neighbourhood structure of a fuzzy point and Moore-Smith convergence. J Math Anal Appl 76:571–599
Xu Y (1993) Lattice implication algebras. J Southeast Jiaotong Univ 1:20–27
Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353
Zhan J, Jun YB, Davvaz B (2009) On (∈, ∈ ∨ q)-fuzzy ideals of BCI-algebras. Iran J Fuzzy Syst 6(1):81–94
Zhan J, Tan Z (2004) Intuitionistic fuzzy a-ideals in BCI-algebras. Soochow Math J 30:207–216
Zhang XH, Jiang H, Bhatti SA (1994) On p-ideals of BCI-algebras. Punjab Univ J Math 27:121–128
Acknowledgements
This research is partially supported by a grant of the National Natural Science Foundation of China (60875034); a grant of the Natural Science Foundation of Education Committee of Hubei Province, China (D20092901) and also the support of the Natural Science Foundation of Hubei Province, China (2009CDB340).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhan, J., Jun, Y.B. On \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy ideals of BCI-algebras. Neural Comput & Applic 20, 319–328 (2011). https://doi.org/10.1007/s00521-010-0376-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-010-0376-6