Abstract
In this paper, we address the challenge of realizing full-body behaviors in scalable modular robots. We present an experimental study of a biologically inspired approach to organize the morphology and control of modular robots. The approach introduces a nested hierarchy that decomposes the complexity of assembling and commanding a functional robot made of numerous simple modules. The purpose is to support versatility, scalability, and provide design abstraction. The robots we describe incorporate anatomy-inspired parts such as muscles, bones, and joints, and these parts in turn are assembled from modules. Each of those parts encapsulates one or more functions, e.g., a muscle can contract. Control of the robot can then be cast as a problem of controlling its anatomical parts rather than each discrete module. To validate this approach, we perform experiments with micron-scale spherical catom modules in simulation. The robots we simulate are increasingly complex and include snake, crawler, quadruped, cilia surface, arm-joint-muscle, and grasping robots. We conclude that this is a promising approach for future microscopic many-modules systems, but also that it is not applicable to relatively weak and slow homogeneous systems such as the centimeter-scale ATRON.















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ashley-Rollman M, Goldstein S, Lee P, Mowry T, Pillai P (2007) Meld: a declarative approach to programming ensembles. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS ’07), pp 2794–2800
Bhat P, Kuffner J, Goldstein S, Srinivasa S (2006) Hierarchical motion planning for self-reconfigurable modular robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS ’06), pp 886–891
Bojinov H, Casal A, Hogg T (2000) Emergent structures in modular self-reconfigurable robots. In: Proceedings of the IEEE/RSJ international conference on robotics & automation (ICRA’00), pp 1734–1741
Bongard J (2002) Evolving modular genetic regulatory networks. In: Proceedings of congress on evolutionary computation (CEC ’02), vol 2, pp 1872–1877
Brandt D, Christensen DJ, Lund HH (2007) ATRON robots: versatility from self-reconfigurable modules. In: Proceedings of the IEEE international conference on mechatronics and automation (ICMA’07). Harbin, China, pp 2254–2260
Bueno-Barrachina J, Ca nas Peñuelas C, Catalan-Izquierdo S, Cavallé-Sesé F (2009) Capacitance evaluation on perpendicular plate capacitors by means of finite element analysis. In: Proceedings of international conference on renewable energies and power quality (ICREPQ’09)
Butler Z, Rus D (2003) Distributed locomotion algorithms for self-reconfigurable robots operating on rough terrain. In: Proceedings of IEEE international symposium on computational intelligence in robotics and automation (CIRA’03), pp 880–885
Campbell J, Pillai P (2008) Collective actuation. Int J Robotics Res 27:299–314
Castano A, Shen W-M, Will P (2000) Conro: towards deployable robots with inter-robot metamorphic capabilities. Auton Robots 8(3):309–324
Chirikjian G (1994) Kinematics of a metamorphic robotic system. In: Proceedings of the IEEE international conference on robotics and automation, pp 449–455
Christensen DJ (2006) Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’06). Orlando, FL, pp 2539–2545
Christensen DJ, Campbell J (April 2007) Locomotion of miniature catom chains: Scale effects on gait and velocity. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’07). Rome, Italy, pp 2254–2260
Fukuda T, Nakagawa S (1988) Dynamically reconfigurable robotic system. In: Proceedings of the IEEE international conference on robotics & automation (ICRA’88), pp 1581–1586
Fukuda T, Nakagawa S, Kawauchi Y, Buss M (1988) Self organizing robots based on cell structures-cebot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’88), pp 145–150
Fukuda T, Ueyama T (1994) Cellular robotics and micro robotic systems, vol 10. World Scientific Publishing, Singapore, p 38
Garcia RFM, Schultz UP, Stoy K (2009) On the efficiency of local and global communication in modular robots. In: Proceedings of the IEEE/RJS international conference on intelligent robots and systems (IROS’09), pp 1502–1508
Goldstein S, Campbell J, Mowry T (2005) Programmable matter. Comput Aided Design 38(6):99–101
Goldstein S, Mowry T (2004) Claytronics: a scalable basis for future robots. In: Robosphere
Griffith SDG, Jacobson J (2005) Self-replication from random parts. Nat Biotechnol 437:636
Groß R, Bonani M, Mondada F, Dorigo M (2006) Autonomous self-assembly in a swarm-bot. In: Proceedings of the 3rd international symposium on autonomous minirobots for research and edutainment (AMiRE 2005). Springer, Berlin, Germany, pp 314–322
Hotz PE (2003) Exploring regenerative mechanisms found in flatworms by artificial evolutionary techniques using genetic regulatory networks. In: Congress on evolutionary computation (CEC ’03), vol 3, pp 2026–2033
Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653
Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331–348
Jørgensen MW, Østergaard EH, Lund HH (2004) Modular ATRON: modules for a self-reconfigurable robot. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS’04), pp 2068–2073
Kamimura A, Kurokawa H, Yoshida E, Murata S, Tomita K, Kokaji S (2005) Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans Mechatron 10(3):314–325
Karagozler ME, Campbell J, Fedder GK, Goldstein SC, Weller MP, Yoon BW (2007) Electrostatic latching for inter-module adhesion, power transfer, and communication in modular robots. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS ’07), pp 2779–2786
Karagozler ME, Goldstein SC, Reid JR (2009) Stress-driven mems assembly + electrostatic forces = 1 mm diameter robot. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS ’09), pp 2763–2769
Klavins E (2007) Programmable self-assembly. IEEE Control Syst Mag 27(4):43–56
Kotay K, Rus D (2000) Algorithms for self-reconfiguring molecule motion planning. In: Proceedings of IEEE international conference on intelligent robots and systems (IROS’00), pp 2184–2193
Kotay K, Rus D, Vona M, McGray C (1998) The selfreconfiguring robotic molecule: design and control algorithms. In: Robotics: the algorithmic perspective. AK Peters, pp 375–386
Kurokawa H, Murata S, Yoshida E, Tomita K, Kokaji S (1998) A 3-d self-reconfigurable structure and experiments. In: Proceedings of the IEEE/RJS international conference on intelligent robots and systems (IROS’98), vol 2. Victoria, BC, Canada, pp 860–665
Kurokawa H, Tomita K, Kamimura K, Kokaji S, Hasuo T, Murata S (2008) Distributed self-reconfiguration of M-TRAN III modular robotic system. Int J Robotics Res 27(3–4):373–386
Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nat Biotechnol 406:974–978
Marbach D, Ijspeert AJ (2005) Online optimization of modular robot locomotion. In: Proceedings of the IEEE international conference on mechatronics and automation (ICMA’05), pp 248–253
Murata S, Kurokawa H, Kokaji S (1994) Self-assembling machine. In: Proceedings of IEEE international conference on robotics and automation (ICRA’94), pp 441–448
Murata S, Yoshida E, Tomita K, Kurokawa H, Kamimura A, Kokaji S (2000) Hardware design of modular robotic system. In: Proceedings, IEEE/RSJ international conference on intelligent robots and systems (IROS’00). Takamatsu, Japan, pp 2210–2217
Nagpal R (1999) Organizing a global coordinate system from local information on an amorphous computer. AI Memo 1666
Østergaard EH, Kassow K, Beck R, Lund HH (2006) Design of the ATRON lattice-based self-reconfigurable robot. Auton Robots 21:165–183
Østergaard EH, Lund HH (2004) Distributed cluster walk for the ATRON self-reconfigurable robot. In: Proceedings of the 8th conference on intelligent autonomous systems (IAS-8). Amsterdam, Holland, pp 291–298
Reid JR, Vasilyev V, Webster RT (2008) Building micro-robots: a path to sub-mm3 autonomous systems. Nanotechnology 2008 3:174–177
De Rosa M, Goldstein S, Lee P, Campbell J, Pillai P (2006) Scalable shape sculpting via hole motion: Motion planning in lattice-constrained modular robots. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’06). Orlando, pp 1462–1468
Rus D, Vona M (2000) A physical implementation of the self-reconfiguring crystalline robot. In: Proceedingsof the IEEE international conference on robotics and automation (ICRA’00) vol 2, pp 1726–1733
Schultz UP, Christensen DJ, Stoy K (October 2007) A domain-specific language for programming self-reconfigurable robots. In: Workshop on automatic program generation for embedded systems (APGES), pp 28–36
Shen W-M, Krivokon M, Chiu H, Everist J, Rubenstein M, Venkatesh J (2006) Multimode locomotion via superbot reconfigurable robots. Auton Robots 20(2):165–177
Shen W-M, Salemi B, Will P (2002) Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Trans Robotics Autom 18:700–712
Sims K (1994) Evolving 3d morphology and behavior by competition. In: Brooks R, Maes P (eds) Proceedings of artificial life IV. MIT Press, Cambridge, pp 28–39
Smith R (2005) Open dynamics engine. http://www.ode.org
Stoy K (2004) Controlling self-reconfiguration using cellular automata and gradients. In: Proceedings of the 8th conference on intelligent autonomous systems (IAS-8). Amsterdam, pp 693–702
Stoy K, Lyder A, Garcia RFM, Christensen DJ (2007) Hierarchical robots. In: Proceedings of the IROS workshop on self-reconfigurable modular robots, San Diego, CA
Stoy K, Shen W-M, Will P (2002) Using role based control to produce locomotion in chain-type self-reconfigurable robots. IEEE Trans Mechatron 7(4):410–417
White P, Zykov V, Bongard J, Lipson H (June 2005) Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of robotics: science and systems. Cambridge, USA, pp 161–168
Yim M (1994) Locomotion with a unit-modular reconfigurable robot. PhD thesis, Department of Mechanical Engineering, Stanford University
Yim M, Duff DG, Roufas KD (2000) Polybot: a modular reconfigurable robot. In: Proceedings of IEEE international conference on robotics & automation (ICRA). San Francisco, CA, USA, pp 514–520
Yim M, Shen W-M, Salemi B, Rus Daniela, Moll M, Lipson H, Klavins E (2007) Modular self-reconfigurable robot systems: challenges and opportunities for the future. IEEE Robotics Autom Mag 14(1):43–52
Yim M, Shirmohammadi B, Sastra J, Park M, Dugan M, Taylor CJ (2007) Towards robotics self-reassembly after explosion. In: Video proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’07), San Diego, CA
Zhang Y, Yim M, Eldershaw C, Duff D, Roufas K (2003) Phase automata: a programming model of locomotion gaits for scalable chain-type modular robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’03). Las Vegas, Nevada, USA, pp 2442–2447
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Christensen, D.J., Campbell, J. & Stoy, K. Anatomy-based organization of morphology and control in self-reconfigurable modular robots. Neural Comput & Applic 19, 787–805 (2010). https://doi.org/10.1007/s00521-010-0387-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-010-0387-3