Skip to main content
Log in

Feature extraction using maximum variance sparse mapping

  • ICIC2010
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a multiple sub-manifold learning method–oriented classification is presented via sparse representation, which is named maximum variance sparse mapping. Based on the assumption that data with the same label locate on a sub-manifold and different class data reside in the corresponding sub-manifolds, the proposed algorithm can construct an objective function which aims to project the original data into a subspace with maximum sub-manifold distance and minimum manifold locality. Moreover, instead of setting the weights between any two points directly or obtaining those by a square optimal problem, the optimal weights in this new algorithm can be approached using L1 minimization. The proposed algorithm is efficient, which can be validated by experiments on some benchmark databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  2. Bengio Y, Paiement JF, Vincent P (2003) Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, Technical Report 1238, Universit′e deMontreal

  3. Yan S, Xu D, Zhang B, Zhang HJ (2007) Graph embedding: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Machine Intell 29(1):40–51

    Article  MathSciNet  Google Scholar 

  4. He X, Yang S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Machine Intell 27(3):328–340

    Article  Google Scholar 

  5. He X, Niyogi P (2003) Locality preserving projections, in: advances in neural information processing systems 16 (NIPS 2003). Vancouver, Canada

    Google Scholar 

  6. Cai D, He X, Han J, Zhang H (2006) Orthogonal Laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3609–3614

    Article  Google Scholar 

  7. Yang J, Zhang D, Yang JY, Niu B (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics. IEEE Trans Pattern Anal Machine Intell 29(4):650–664

    Article  Google Scholar 

  8. Deng W, Hu J, Guo J, Zhang H, Zhang C (2008) Comments on “globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics”. IEEE Trans Pattern Anal Machine Intell 30(8):1503–1504

    Article  Google Scholar 

  9. Li B, Wang C, Huang DS (2009) Supervised feature extraction based on orthogonal discriminant projection. Neurocomputing 73(1–3):191–196

    Article  Google Scholar 

  10. Saul LK, Roweis ST (2003) Think globally fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155

    MathSciNet  Google Scholar 

  11. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  12. Wright J, Yang A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Machine Intell 31(2):210–227

    Article  Google Scholar 

  13. Li B, Huang DS, Wang C, Liu KH (2008) Feature extraction using constrained maximum variance mapping. Pattern Recogn 41(11):3287–3294

    Article  MATH  Google Scholar 

  14. Tibshirani Robert (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  15. Drori DD (2006) Solution of L1 minimization problems by LARS/Homotopy methods. ICASSP 3:636–639

    Google Scholar 

  16. Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341

    Article  MATH  Google Scholar 

  17. Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. ECCV, Crete

    Google Scholar 

  18. Zhang L, Yang M, Feng Z, Zhang D (2010) On the dimensionality reduction for sparse representation based face recognition. ICPR, Istanbul

    Google Scholar 

  19. Zhang H, Duan Z (2009) Symbolic algorithm analysis of rectangular hybrid systems. J Comput Sci Technol 24(3):1–15

    Article  MathSciNet  MATH  Google Scholar 

  20. Sim T, Baker S, Bsat M (2001) The CMU pose, illumination, and expression (PIE) database of human faces, Technical Report CMU-RI-TR-01-02, Robotics Institute, Carnegie Mellon University

Download references

Acknowledgments

This work was supported by the grants of the National Natural Science Foundation of China (61070013, 60703018, 61070012 & 90924026), 973 Program (2007CB310800), Twelfth Five Years Plan Key National Project (GFZX0101050302), 863 Program (2008AA022503, 2008AA01Z208, 2009AA01Z405), the Science and Technology Commission of Wuhan Municipality “Chenguang Jihua” (201050231058), the 111 Project (B07037), Natural Science Foundation of Hubei Province (2010CDB03302), Postdoctoral Science Foundation of China (20100470613), Shanghai Key Laboratory of Intelligent Information Processing, China (IIPL-2010-004), the Open Fund Project of State Key Laboratory of Software Engineering (Wuhan University, China, SKLSE08-11), and Science Foundation of Wuhan University of Science and Technology (2010XG7&2010XZ015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Li, B. & Zhang, WS. Feature extraction using maximum variance sparse mapping. Neural Comput & Applic 21, 1827–1833 (2012). https://doi.org/10.1007/s00521-010-0519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0519-9

Keywords

Navigation