Skip to main content
Log in

Describing function analysis of uncertain fuzzy vehicle control systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, some useful frequency domain methods including describing function, parameter space, and Kharitonov approach are applied to analyze the stability of an uncertain fuzzy vehicle control system for limit cycle prediction. A systematic procedure is proposed to solve this problem. The fuzzy controller can be linearized by the use of classical describing function firstly. By doing so, it is feasible to treat the stability problem of a fuzzy control system as linear one. In order to consider the robustness of a fuzzy vehicle control system, parameter space method and Kharitonov approach are then employed for plotting the stability boundaries. Furthermore, the effect of transport delay is also addressed. More information of limit cycles can be obtained by this approach. This work shows that the limit cycles caused by a static fuzzy controller can be easily suppressed if the system parameters are chosen carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

V i :

Voltage applied to the throttle valve

V :

Forward velocity of the vehicle

p 1(V), p 2(V), p 3(V):

Nonlinear velocity–dependent functions

T p (V):

Function with the propulsion system and the roadway interface

ψ(V):

Function with the tire–roadway interface

k p , k d , k u :

Scaling factors of fuzzy control system

a, b, c :

Perturbation parameters

M i :

Fuzzy variables

Ω i (x):

Fuzzy basis function

Φ i :

Fuzzy membership functions

e(t):

Error signal

x(t):

Reference input signal

K 1(s), K 2(s), K 3(s), K 4(s):

Kharitonov polynomials

q i :

Uncertainty

u(x):

Static fuzzy control

N 1 :

Describing function

A :

Amplitude of limit cycle

δ i :

Angles

α, β:

Adjustable parameters

ω:

Frequency

References

  1. Gelb A, Velde WEV (1968) Multiple input describing functions and nonlinear system design. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Siljak DD (1969) Nonlinear systems—the parameter analysis and design. Wiley, New York

    MATH  Google Scholar 

  3. Atherton DP (1975) Nonlinear control engineering. Van Nostrand Reinhold Company, London

    Google Scholar 

  4. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall Inc., New Jersey

    MATH  Google Scholar 

  5. Heyns LJ, Kruger JJ (1994) Describing function-based analysis of a nonlinear hydraulic transmission line. IEEE Trans Control Syst Technol 2(1):31–35

    Article  Google Scholar 

  6. Voda AB, Blaha P (2002) Describing function approximation of a two-relay system configuration with application to coulomb friction identification. Control Eng Pract 10:655–668

    Article  Google Scholar 

  7. Xu JJ, Lee TH, Pan YJ (2003) On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics. Mechatronics 13:755–770

    Article  Google Scholar 

  8. Adams MD (1999) High speed target pursuit and asymptotic stability in mobile robotics. IEEE Trans Robot Automat 15(2):230–236

    Article  Google Scholar 

  9. Gordillo F, Aracil J, Alamo T (1997) Determining limit cycles in fuzzy control systems. In: Proceedings IEEE international conference on fuzzy systems, pp 193–198

  10. Kim E, Lee H, Park M (2000) Limit-cycle prediction of a fuzzy control system based on describing function method. IEEE Trans Fuzzy Syst 8(1):11–21

    Article  MathSciNet  Google Scholar 

  11. Gomariz S, Guinjoan F, Idiarte EV, Salamero LM, Poveda A (2000) On the use of the describing function in fuzzy controllers design for switching DC-DC regulators. In: IEEE international symposium on circuits systems, pp 247–250

  12. Delgado A (1998) Stability analysis of neurocontrol systems using a describing function. In: Proceedings of international joint conference on neural network, pp 2126–2130

  13. Delgado A, Warwick K, Kambhampati C (1998) Limit cycles in neurocontrolled minirobots. In: UKACC international conference on control, pp 173–177

  14. Siljak DD (1989) Parameter space methods for robust control design: a guide tour. IEEE Trans Automat Control 34(7):674–688

    Article  MathSciNet  MATH  Google Scholar 

  15. Han KW (1977) Nonlinear control systems—some practical methods. Academic Cultural Company, California

    MATH  Google Scholar 

  16. Han KW, Thaler GJ (1966) Control system analysis and design using a parameter space method. IEEE Trans Automat Control 11(3):560–563

    Article  Google Scholar 

  17. Barmish BR (1994) New tools for robustness of linear systems. Macmillan Publishing Company, New York

    MATH  Google Scholar 

  18. Hauksdottir AS, Sigurdaraottir G (1993) On the use of robust design methods in vehicle longitudinal controller design. ASME J Dyn Syst Meas Control 115(3):166–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jau-Woei Perng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perng, JW. Describing function analysis of uncertain fuzzy vehicle control systems. Neural Comput & Applic 21, 555–563 (2012). https://doi.org/10.1007/s00521-011-0532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0532-7

Keywords

Navigation