Skip to main content
Log in

Dynamic transition embedding for image feature extraction and recognition

  • ICIC2010
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel method called dynamic transition embedding (DTE) for linear dimensionality reduction. Differing from the recently proposed manifold learning-based methods, DTE introduces the dynamic transition information into the objective function by characterizing the Markov transition processes of the data set in time t(t > 0). In the DTE framework, running the Markov chain forward in time, or equivalently, taking the larger powers of Markov transition matrices integrates the local geometry and, therefore, reveals relevant geometric structures of the data set at different timescales. Since the Markov transition matrices defined by the connectivity on a graph contain the intrinsic geometry information of the data points, the elements of the Markov transition matrices can be viewed as the probabilities or the similarities between two points. Thus, minimizing the errors of the probability reconstruction or similarity reconstruction instead of the least-square reconstruction in the well-known manifold learning algorithms will obtain the optimal linear projections with respect to preserving the intrinsic Markov processes of the data set. Comprehensive comparisons and extensive experiments show that DTE achieves higher recognition rates than some well-known linear dimensionality reduction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):3–4

    Article  Google Scholar 

  2. Joliffe I (1986) Principal component analysis. Springer, New York

    Google Scholar 

  3. Fukunnaga K (1991) Introduction to statistical pattern recognition, 2nd edn. Academic Press, New York

    Google Scholar 

  4. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  5. Belhumeour PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  6. Scho¨lkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a Kernel eigenvalue problem. Neural Comput 5(10):1299–1319

    Article  Google Scholar 

  7. Yang J, Frangi AF, Zhang D, Yang J-y, Zhong J (2005) KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244

    Article  Google Scholar 

  8. Tenenbaum JB, desilva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  9. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  10. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of advances in neural information processing system, vol 14, Vancouver, Canada, December

  11. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15:1373–1396

    Article  MATH  Google Scholar 

  12. Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  MATH  Google Scholar 

  13. Lafon S, Lee AB (2006) Diffusion maps and coarse-graining: a unified framework for dimension reduction, graph partitioning, and data set parameterization. IEEE Trans Pattern Anal Mach Intell 28(9):1393–1403

    Article  Google Scholar 

  14. Donoho D, Grimes C (2003) Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Proc Nat Acad Sci 100(10):5591–5596

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin T, Zha H, Lee S (2008) Riemannian manifold learning. IEEE Trans Pattern Anal Mach Intell 30(5):796–809

    Article  Google Scholar 

  16. He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. In: Proceedings in international conference on computer vision (ICCV), Beijing, China

  17. He X, Niyogi P (2003) Locality preserving projections. In: Proc. 16th conf. neural information processing systems

  18. Zhang T, Yang J, Zhao D, Ge X (2007) Linear local tangent space alignment and application to face recognition. Neurocomputing 70:1547–1553

    Article  Google Scholar 

  19. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. In: Proc. IEEE conf. computer vision and pattern recognition 2:846–853

  20. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  21. Fu Y, Yan S, Huang TS (2008) Classification and feature extraction by simplexization. IEEE Trans Inf Forensics Secur 3(1):91–100

    Article  Google Scholar 

  22. Bo L, De-Shuang H, Chao W, Kun-Hong L (2008) Feature extraction using constrained maximum variance mapping. Pattern Recogn 41(11):3287–3294

    Article  MATH  Google Scholar 

  23. Zhi R, Ruan Q (2007) Facial expression recognition base on two-dimensional discriminant locality preserving projections. Neurocomputing 70:1543–1546

    Article  Google Scholar 

  24. Wan M, Lai Z, Shao J, Jin Z (2009) Two-dimensional local graph embedding discriminant analysis (2DLGEDA) with its application to face and palm biometrics. Neurocomputing 73:193–203

    Article  Google Scholar 

  25. Xu Y, Feng G, Zhao Y (2009) One improvement to two-dimensional locality preserving projection method for use with face recognition. Neurocomputing 73:245–249

    Article  Google Scholar 

  26. Nadler B, Lafon S, Coifman RR, Kevrekidis IG (2006) Diffusion maps spectral clustering and eigenfunctions of Fokker-Planck operators. Adv Neural Inf Process Syst 18:955–962

    Google Scholar 

  27. Lafon S (2004) Diffusion maps and geometric harmonics. Ph. D. dissertation, Yale University

  28. Hein M, Audibert J, von Luxburg U (2005) From graphs to manifolds—weak and strong pointwise consistency of graph Laplacians. Lect Notes Comput Sci 3559:470–485

    Article  Google Scholar 

  29. Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416

    Article  MathSciNet  Google Scholar 

  30. Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. In: Proceedings of the National Academy of Sciences 102(21):7426–7431

  31. Zhang L, Zhang L, Zhang D, Zhu H (2011) Ensemble of local and global information for finger-knuckle-print recognition. Patt Recogn, accepted

  32. Zhang L, Zhang L, Zhang D, Zhu H (2010) Online finger-knuckle-print verification for personal authentication. Patt Recogn 43(7):2560–2571

    Article  MATH  Google Scholar 

  33. Zhang L, Zhang L, Zhang D (2009) Finger-knuckle-print: a new biometric identifier. In: Proceedings of the IEEE international conference on image processing

  34. Zhang B, Zhang L, Zhang D, Shen L (2010) Directional binary code with application to PolyU near-infrared face database. Patt Recogn Lett 31(14):2337–2344

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Science Foundation of China under grant No. 60503026, 60632050, 60473039, 60873151, 61005005 and Hi-Tech Research and Development Program of China under grant No.2006AA01Z119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, Z., Jin, Z., Yang, J. et al. Dynamic transition embedding for image feature extraction and recognition. Neural Comput & Applic 21, 1905–1915 (2012). https://doi.org/10.1007/s00521-011-0587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0587-5

Keywords

Navigation