Skip to main content
Log in

Joint learning of error-correcting output codes and dichotomizers from data

  • ICONIP2010
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The ECOC technique is a powerful tool to learn and combine multiple binary learners for multi-class classification. It generally involves three steps: coding, dichotomizers learning, and decoding. In previous ECOC methods, the coding step and the dichotomizers learning step are usually performed independently. This simplifies the learning problem but may lead to unsatisfactory decoding results. To solve this problem, we propose a novel model for learning the ECOC matrix and dichotomizers jointly from data. We formulate the model as a nonlinear programming problem and develop an efficient alternating minimization algorithm to solve it. Specifically, for fixed ECOC matrix, our model is decomposed into a group of mutually independent quadratic programming problems; while for fixed dichotomizers, it is a difference of convex functions problem and can be easily solved using the concave--convex procedure algorithm. Our experimental results on ten data sets from the UCI machine learning repository demonstrated the advantage of our model over state-of-the-art ECOC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://svm.sourceforge.net/docs/3.00/api/

  2. http://ecoclib.svn.sourceforge.net/viewvc/ecoclib/

  3. http://cvxr.com/cvx/

References

  1. Allwein EL, Schapire RE, Singer Y (2000) Reducing multiclass to binary: a unifying approach for margin classifiers. J Mach Learn Res 1:113–141

    MathSciNet  Google Scholar 

  2. Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  3. Crammer K, Singer Y (2002) On the learnability and design of output codes for multiclass problems. Mach Learn 47(2–3):201–233

    Article  MATH  Google Scholar 

  4. Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2:263–286

    MATH  Google Scholar 

  5. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  6. Escalera S, Pujol O, Radeva P (2010) On the decoding process in ternary error-correcting output codes. IEEE Trans Pattern Anal Mach Intell 32(1):120–134

    Article  Google Scholar 

  7. Escalera S, Pujol O, Radeva P (2010) Re-coding ECOCs without re-training. Pattern Recognit Lett 31(7):555–562

    Article  Google Scholar 

  8. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  9. Fürnkranz J (2002) Round Robin classification. J Mach Learn Res 2:721–747

    MathSciNet  MATH  Google Scholar 

  10. Hastie T, Tibshirani R (1997) Classification by pairwise coupling. In: NIPS

  11. Hastie T, Tibshirani R, Friedman J (2009) Elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    Google Scholar 

  12. Horst R, Thoai NV (1999) DC programming: overview. J Optim Theory Appl 103(1):1–43

    Article  MathSciNet  Google Scholar 

  13. Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425

    Article  Google Scholar 

  14. Huang K, Yang H, King I, Lyu MR (2008) Maxi–min margin machine: learning large margin classifiers locally and globally. IEEE Trans Neural Netw 19(2):260–272

    Article  Google Scholar 

  15. Kumar V, Grama A, Gupta A, Karypis G (1994) Introduction to parallel computing: algorithm design and analysis. Benjamin Cummings, Redwood City

    MATH  Google Scholar 

  16. Liu CL, Sako H (2006) Class-specific feature polynomial classifier for pattern classification and its application to handwritten numeral recognition. Pattern Recognit 39(4):669–681

    Article  MATH  Google Scholar 

  17. Platt JC, Cristianini N, Shawe-Taylor J (1999) Large margin DAGs for multiclass classification. In: NIPS, pp 547–553

  18. Pujol O, Escalera S, Radeva P (2008) An incremental node embedding technique for error correcting output codes. Pattern Recognit 41(2):713–725

    Article  MATH  Google Scholar 

  19. Pujol O, Radeva P, Vitrià J (2006) Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes. IEEE Trans Pattern Anal Mach Intell 28(6):1007–1012

    Article  Google Scholar 

  20. Rifkin RM, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5:101–141

    MathSciNet  MATH  Google Scholar 

  21. Singh-Miller N, Collins M (2009) Learning label embeddings for nearest-neighbor multi-class classification with an application to speech recognition. In: NIPS, pp 1678–1686

  22. Sriperumbudur B, Lanckriet G (2009) On the Convergence of the concave-convex procedure. In: NIPS, pp 1759–1767

  23. Utschick W, Weichselberger W (2001) Stochastic organization of output codes in multiclass learning problems. Neural Comput 13(5):1065–1102

    Article  MATH  Google Scholar 

  24. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  25. Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15(4):915–936

    Article  MATH  Google Scholar 

  26. Zhou J, Peng H, Suen C (2008) Data-driven decomposition for multi-class classification. Pattern Recognit 41(1):67–76

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under grant no. 60825301 and no. 61075052. We thank Xu-Yao Zhang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, G., Huang, K. & Liu, CL. Joint learning of error-correcting output codes and dichotomizers from data. Neural Comput & Applic 21, 715–724 (2012). https://doi.org/10.1007/s00521-011-0653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0653-z

Keywords

Navigation