Skip to main content
Log in

A multi-population cultural algorithm with adaptive diversity preservation and its application in ammonia synthesis process

  • LSMS2010 and ICSEE 2010
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A multi-population cultural differential evolution (MCDE) algorithm is proposed. Each of the populations is managed by its private cultural differential evolution algorithm, in which a center individual is introduced into the belief space and selection function follows a new method to select the offspring for the next generation. To accelerate the convergence speed, the populations exchange their knowledge with each other every given generations. An adaptive mechanism of population diversity preservation is put forward to prevent the populations from being trapped in local optima. In the adaptive mechanism, the idea of culture fusion between populations is used to know the convergence status, so that the diversity of populations is kept along the evolutionary process. The performance evaluation on MCDE using eleven constrained optimization problems shows that MCDE is a competitive approach. MCDE is further applied to a practical optimization problem in an ammonia synthesis system with the objective to maximize the net value of ammonia. The results achieved by MCDE are compared with those by two traditional differential evolution algorithms, which indicate that MCDE has more excellent performance and better effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Durham W (1991) Coevolution: genes, culture, and human diversity. Stanford University Press, Stanford

    Google Scholar 

  2. Reynolds RG (1994) An introduction to cultural algorithm. In: Proceedings of the 3rd annual conference on evolutionary programming. World Scientific, pp 131–139

  3. Reynolds RG, Peng B, Brewster JJ (2003) Cultural swarms: knowledge-driven problem solving in social systems. In: IEEE international conference on systems, man, and cybernetics, vol 4. IEEE Press, New York, pp 3589–3594. doi:10.1109/ICSMC.2003.1244446

  4. Gao F, Cui G, Liu H (2006) Integration of genetic algorithm and cultural algorithms for constrained optimization. In: King I et al (eds) ICONIP 2006, Part III, LNCS, vol 4234. Springer, Heidelberg, pp 817–825. doi:10.1007/11893295_90

  5. Lin C, Chen C, Lin C (2009) A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Trans Syst Man Cybern C 39:55–68. doi:10.1109/TSMCC.2008.2002333

    Article  Google Scholar 

  6. Ricardo LB, Carlos ACC (2004) A cultural algorithm with differential evolution to solve constrained optimization problems. In: Lemaitre C, Reyes CA, Gonzalez JA (eds) IBERAMIA 2004, LNAI, vol 3315. Springer, Heidelberg, pp 881–890. doi:10.1007/978-3-540-30498-2_88

  7. Huang H, Gu X (2008) Neural network based on cultural algorithms and its application on modeling. Control Decis 23:477–480 (in Chinese). doi:CNKI:SUN:KZYC.0.2008-04-023. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KZYC200804023.htm

    Google Scholar 

  8. Yuan X, Nie H, He L, Li C, Zhang Y (2008) A cultural algorithm for scheduling of hydro producer in the power market. In: Second international conference on genetic and evolutionary computing. IEEE Press, New York, pp 364–367. doi:10.1109/WGEC.2008.55

  9. Ali M, Reynolds R, Ali R, Salhieh A (2011) Knowledge-based constrained function optimization using cultural algorithms with an enhanced social influence metaphor. Comput Intell, SCI 343:103–119. doi:10.1007/978-3-642-20206-3_7

    Article  Google Scholar 

  10. Coelho LS, Clemente Souza RCT, Mariani VC (2009) Improved differential evolution approach based on cultural algorithm and diversity measure applied to solve economic load dispatch problems. Math Comput Simul 79:3136–3147. doi:10.1016/j.matcom.2009.03.005

    Article  MATH  Google Scholar 

  11. Xiao B, Xiao J, Dong X, Tao Y, Lu C (2010) Research of PID parameter optimization based on cultural based ant colony algorithm for superheated steam temperature. In: 2010 29th Chinese control conference. IEEE Press, New York, pp 5171–5176

  12. Reyes LC, Zezzatti CAOO, Santillán CG, Hernández PH, Fuerte MV (2010) A cultural algorithm for the urban public transportation. Lect Notes Comput Sci 6077:135–142. doi:10.1007/978-3-642-13803-4_17

    Article  Google Scholar 

  13. Soza C, Becerra RL, Riff MC, Coello CAC (2011) Solving timetabling problems using a cultural algorithm. Appl Soft Comput 11:337–344. doi:10.1016/j.asoc.2009.11.024

    Article  Google Scholar 

  14. Pan ZL, Chen L, Zhang GZ (2010) Cultural algorithm for minimization of binary decision diagram and its application in crosstalk fault detection. Int J Autom Comput 7:70–77. doi:10.1007/s11633-010-0070-2

    Article  Google Scholar 

  15. Digalakis JG, Margaritis KG (2002) A multipopulation cultural algorithm for the electrical generator scheduling problem. Math Comput Simul 60:293–301. doi:10.1016/S0378-4754(02)00021-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Alami J, Imrani AE, Bouroumi A (2007) A multipopulation cultural algorithm using fuzzy clustering. Appl Soft Comput 7:506–519. doi:10.1016/j.asoc.2006.10.010

    Article  Google Scholar 

  17. Guo YN, Cheng J, Cao Y, Lin Y (2011) A novel multi-population cultural algorithm adopting knowledge migration. Soft Comput 15:897–905. doi:10.1007/s00500-010-0556-4

    Article  Google Scholar 

  18. Reynolds RG, Zhu S (2001) Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming. IEEE Trans Syst Man Cybern B 31:1–18. doi:10.1109/3477.907561

    Article  Google Scholar 

  19. Storn R, Price K (1995) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, TR-95-012, International Computer Science Institute

  20. Bhat TR, Venkataramani D, Ravi V, Murty CVS (2006) An improved differential evolution method for efficient parameter estimation in biofilter modeling. Biochem Eng J 28:167–176. doi:10.1016/j.bej.2005.11.002

    Article  Google Scholar 

  21. Chauhan N, Ravi V, Chandra DK (2009) Differential evolution trained wavelet neural networks: application to bankruptcy prediction in banks. Expert Syst Appl 36:7659–7665. doi:10.1016/j.eswa.2008.09.019

    Article  Google Scholar 

  22. Khazraee SM, Jahanmiri AH, Ghorayshi SA (2010) Model reduction and optimization of reactive batch distillation based on the adaptive neuro-fuzzy inference system and differential evolution. Neural Comput Appl. doi:10.1007/s00521-010-0364-x

  23. Liu Y, Qin Z, Shi Z, Lu J (2007) Center particle swarm optimization. Neurocomputing 70:672–679. doi:10.1016/j.neucom.2006.10.002

    Article  Google Scholar 

  24. Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7:19–44. doi:10.1162/evco.1999.7.1.19

    Article  Google Scholar 

  25. Zangwill WI (1967) Nonlinear programming via penalty functions. Manag Sci 13:344–358

    Article  MathSciNet  MATH  Google Scholar 

  26. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4:284–294. doi:10.1109/4235.873238

    Article  Google Scholar 

  27. Janikow CZ, Michalewicz Z (1991) An experimental comparison of binary and floating point representations in genetic algorithms. In: Proceedings of 4th international conference on genetic algorithms. Morgan Kaufmann, San Mateo, CA, pp 151–157

  28. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. Lect Notes Comput Sci 1447:591–600. doi:10.1007/BFb0040810

    Article  Google Scholar 

  29. Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proceedings of IEEE international conference on evolutionary computation. IEEE Press, New York, pp 842–844. doi:10.1109/ICEC.1996.542711

Download references

Acknowledgments

We are very grateful to the editors and anonymous reviewers for their valuable comments and suggestions to help improve our paper. This work is supported by National High Technology Research and Development Program of China (863 Program) (No. 2009AA04Z141), National Natural Science Foundation of China (Grant no. 61174040), Shanghai Commission of Science and Technology (Grant no. 08JC1408200), Shanghai Leading Academic Discipline Project (Grant no. B504), and the Specialized Research Fund for Doctoral Program of Higher Education of China (No. 200802510010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingsheng Gu.

Appendix: Test constrained optimization problems

Appendix: Test constrained optimization problems

Problem g01

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = 5\sum\limits_{i = 1}^{4} {x_{i} } - 5\sum\limits_{i = 1}^{4} {x_{i}^{2} } - \sum\limits_{i = 5}^{13} {x_{i} } } \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & {g_{1} (x) = 2x_{1} + 2x_{2} + x_{10} + x_{11} - 10 \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = 2x_{1} + 2x_{3} + x_{10} + x_{12} - 10 \le 0,} \hfill \\ {} \hfill & {g_{3} (x) = 2x_{2} + 2x_{3} + x_{11} + x_{12} - 10 \le 0,} \hfill \\ {} \hfill & {g_{4} (x) = - 8x_{1} + x_{10} \le 0,} \hfill \\ {} \hfill & {g_{5} (x) = - 8x_{2} + x_{11} \le 0,} \hfill \\ {} \hfill & {g_{6} (x) = - 8x_{3} + x_{12} \le 0,} \hfill \\ {} \hfill & {g_{7} (x) = - 2x_{4} - x_{5} + x_{10} \le 0,} \hfill \\ {} \hfill & {g_{8} (x) = - 2x_{6} - x_{7} + x_{11} \le 0,} \hfill \\ {} \hfill & {g_{9} (x) = - 2x_{8} - x_{9} + x_{12} \le 0,} \hfill \\ {} \hfill & {0 \le x_{i} \le 1\,(i = 1, \ldots ,9),0 \le x_{i} \le 100\,(i = 10,11,12),0 \le x_{13} \le 1.} \hfill \\ \end{array} $$
(26)

Problem g02

$$ \begin{array}{*{20}c} {\max } \hfill & {f(x) = \left| {\frac{{\sum\nolimits_{i = 1}^{n} {\cos^{4} (x_{i} )} - 2\prod\nolimits_{i = 1}^{n} {\cos^{2} (x_{i} )} }}{{\sqrt {\sum\nolimits_{i = 1}^{n} {ix_{i}^{2} } } }}} \right|} \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & {g_{1} (x) = 0.75 - \prod\limits_{i = 1}^{n} {x_{i} } \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = \sum\limits_{i = 1}^{n} {x_{i} } - 7.5\quad n \le 0, \, } \hfill \\ {} \hfill & {0 \le x_{i} \le 10\,(i = 1, \ldots ,20). \, } \hfill \\ \end{array} $$
(27)

Problem g03

$$ \begin{array}{*{20}c} {\max } \hfill & {f(x) = \left( {\sqrt n } \right)^{n} \prod\limits_{i = 1}^{n} {x_{i} } } \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & {h_{1} (x) = \sum\limits_{i = 1}^{n} {x_{i}^{2} } - 1 = 0,} \hfill \\ {} \hfill & {0 \le x_{i} \le 1\,(i = 1, \ldots ,10).} \hfill \\ \end{array} $$
(28)

Problem g04

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = 5.3578547x_{3}^{2} + 0.8356891x_{1} x_{5} + 37.293239x_{1} - 40,792.141} \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & {g_{1} (x) = 85.334407 + 0.0056858x_{2} x_{5} + 0.0006262x_{1} x_{4} - 0.0022053x_{3} x_{5} - 92 \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = - 85.334407 - 0.0056858x_{2} x_{5} - 0.0006262x_{1} x_{4} + 0.0022053x_{3} x_{5} \le 0,} \hfill \\ {} \hfill & {g_{3} (x) = 80.51249 + 0.0071317x_{2} x_{5} + 0.0029955x_{1} x_{2} + 0.0021813x_{3}^{2} - 110 \le 0,} \hfill \\ {} \hfill & {g_{4} (x) = - 80.51249 - 0.0071317x_{2} x_{5} - 0.0029955x_{1} x_{2} - 0.0021813x_{3}^{2} + 90 \le 0,} \hfill \\ {} \hfill & {g_{5} (x) = 9.300961 + 0.0047026x_{3} x_{5} + 0.0012547x_{1} x_{3} + 0.0019085x_{3} x_{4} - 25 \le 0,} \hfill \\ {} \hfill & {g_{6} (x) = - 9.300961 - 0.0047026x_{3} x_{5} - 0.0012547x_{1} x_{3} - 0.0019085x_{3} x_{4} + 20 \le 0,} \hfill \\ {} \hfill & {78 \le x_{1} \le 102,33 \le x_{2} \le 45,27 \le x_{i} \le 45\,(i = 3,4,5).} \hfill \\ \end{array} $$
(29)

Problem g05

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = 3x_{1} + 0.000001x_{1}^{3} + 2x_{2} + (0.000002/3)x_{2}^{3} } \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & { \, g_{1} (x) = - x_{4} + x_{3} - 0.55 \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = - x_{3} + x_{4} - 0.55 \le 0,} \hfill \\ {} \hfill & {h_{1} (x) = 1,000\sin ( - x_{3} - 0.25) + 1,000\sin ( - x_{4} - 0.25) + 894.8 - x_{1} = 0,} \hfill \\ {} \hfill & {h_{2} (x) = 1,000\sin (x_{3} - 0.25) + 1,000\sin (x_{3} - x_{4} - 0.25) + 894.8 - x_{2} = 0,} \hfill \\ {} \hfill & {h_{3} (x) = 1,000\sin (x_{4} - 0.25) + 1,000\sin (x_{4} - x_{3} - 0.25) + 1294.8 = 0,} \hfill \\ {} \hfill & {0 \le x_{i} \le 1,200\,(i = 1,2), - 0.55 \le x_{i} \le 0.55\,(i = 3,4).} \hfill \\ \end{array} $$
(30)

Problem g06

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = (x_{1} - 10)^{3} + (x_{2} - 20)^{3} \, } \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & { \, g_{1} (x) = - (x_{1} - 5)^{2} - (x_{2} - 5)^{2} + 100 \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = (x_{1} - 6)^{2} + (x_{2} - 5)^{2} - 82.81 \le 0,} \hfill \\ {} \hfill & {13 \le x_{1} \le 100,0 \le x_{2} \le 100.} \hfill \\ \end{array} $$
(31)

Problem g07

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = x_{1}^{2} + x_{2}^{2} + x_{1} x_{2} - 14x_{1} - 16x_{2} + (x_{3} - 10)^{2} + 4(x_{4} - 5)^{2} + (x_{5} - 3)^{2} } \hfill \\ {} \hfill & {\quad \quad \quad + 2(x_{6} - 1)^{2} + 5x_{7}^{2} + 7(x_{8} - 11)^{2} + 2(x_{9} - 10)^{2} + (x_{10} - 7)^{2} + 45} \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & { \, g_{1} (x) = - 105 + 4x_{1} + 5x_{2} - 3x_{7} + 9x_{8} \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = 10x_{1} - 8x_{2} - 17x_{7} + 2x_{8} \le 0,} \hfill \\ {} \hfill & {g_{3} (x) = - 8x_{1} + 2x_{2} + 5x_{9} - 2x_{10} - 12 \le 0,} \hfill \\ {} \hfill & {g_{4} (x) = 3(x_{1} - 2)^{2} + 4(x_{2} - 3)^{2} + 2x_{3}^{2} - 7x_{4} - 120 \le 0,} \hfill \\ {} \hfill & {g_{5} (x) = 5x_{1}^{2} + 8x_{2} + (x_{3} - 6)^{2} - 2x_{4} - 40 \le 0,} \hfill \\ {} \hfill & {g_{6} (x) = x_{1}^{2} + 2(x_{2} - 2)^{2} - 2x_{1} x_{2} + 14x_{5} - 6x_{6} \le 0,} \hfill \\ {} \hfill & {g_{7} (x) = 0.5(x_{1} - 8)^{2} + 2(x_{2} - 4)^{2} + 3x_{5}^{2} - x_{6} - 30 \le 0,} \hfill \\ {} \hfill & {g_{8} (x) = - 3x_{1} + 6x_{2} + 12(x_{9} - 8)^{2} - 7x_{10} \le 0,\quad - 10 \le x_{i} \le 10\,(i = 1, \ldots ,10).} \hfill \\ \end{array} $$
(32)

Problem g08

$$ \begin{array}{*{20}c} {\max } \hfill & {f(x) = \frac{{\sin^{3} (2\pi x_{1} )\sin (2\pi x_{2} )}}{{x_{1}^{3} (x_{1} + x_{2} )}}} \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & { \, g_{1} (x) = x_{1}^{2} - x_{2} + 1 \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = 1 - x_{1} + (x_{2} - 4)^{2} \le 0,} \hfill \\ {} \hfill & {0 \le x_{i} \le 10\,(i = 1,2).} \hfill \\ \end{array} $$
(33)

Problem g09

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = (x_{1} - 10)^{2} + 5(x_{2} - 12)^{2} + x_{3}^{4} + 3(x_{4} - 11)^{2} } \hfill \\ {} \hfill & {\quad \quad \quad + 10x_{5}^{6} + 7x_{6}^{2} + x_{7}^{4} - 4x_{6} x_{7} - 10x_{6} - 8x_{7} } \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & {g_{1} (x) = - 127 + 2x_{1}^{2} + 3x_{2}^{4} + x_{3} + 4x_{4}^{2} + 5x_{5} \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = - 282 + 7x_{1} + 3x_{2} + 10x_{3}^{2} + x_{4} - x_{5} \le 0,} \hfill \\ {} \hfill & {g_{3} (x) = - 196 + 23x_{1} + x_{2}^{2} + 6x_{6}^{2} - 8x_{7} \le 0,} \hfill \\ {} \hfill & {g_{4} (x) = 4x_{1}^{2} + x_{2}^{2} - 3x_{1} x_{2} + 2x_{3}^{2} + 5x_{6} - 11x_{7} \le 0,\quad - 10 \le x_{i} \le 10\,(i = 1, \ldots ,7).} \hfill \\ \end{array} $$
(34)

Problem g10

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = x_{1} + x_{2} + x_{3} } \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & {g_{1} (x) = - 1 + 0.0025(x_{4} + x_{6} ) \le 0,} \hfill \\ {} \hfill & {g_{2} (x) = - 1 + 0.0025(x_{5} + x_{7} - x_{4} ) \le 0,} \hfill \\ {} \hfill & {g_{3} (x) = - 1 + 0.01(x_{8} - x_{5} ) \le 0,} \hfill \\ {} \hfill & {g_{4} (x) = - x_{1} x_{6} + 833.33252x_{4} + 100x_{1} - 83,333.333 \le 0,} \hfill \\ {} \hfill & {g_{5} (x) = - x_{2} x_{7} + 1,250x_{5} + x_{2} x_{4} - 1,250x_{4} \le 0,} \hfill \\ {} \hfill & {g_{6} (x) = - x_{3} x_{8} + 1,25,0000 + x_{3} x_{5} - 2,500x_{5} \le 0,} \hfill \\ {} \hfill & {100 \le x_{1} \le 10,000,1,000 \le x_{i} \le 10,000\,(i = 2,3),10 \le x_{i} \le 1,000\,(i = 4, \ldots ,8).} \hfill \\ \end{array} $$
(35)

Problem g11

$$ \begin{array}{*{20}c} {\min } \hfill & {f(x) = x_{1}^{2} + (x_{2} - 1)^{2} } \hfill \\ {{\text{s}} . {\text{t}} .} \hfill & {h(x) = x_{2} - x_{1}^{2} = 0,\quad - 1 \le x_{i} \le 1\,(i = 1,2).} \hfill \\ \end{array} $$
(36)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Wang, R., Zhang, L. et al. A multi-population cultural algorithm with adaptive diversity preservation and its application in ammonia synthesis process. Neural Comput & Applic 21, 1129–1140 (2012). https://doi.org/10.1007/s00521-011-0749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0749-5

Keywords

Navigation